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Abstract

Background: In the last decade, the growth of the pig-farming industry has led to an increase in antibiotic use,
including several used in human medicine, e.g. (fluoro)quinolones. Data from several studies suggest that there is
a link between the agricultural use of antibiotics and the prevalence of antibiotic-resistant bacteria in the pig
farm environment, including (fluoro)quinolone resistance. This poses a threat to human and animal health. Our
goal was to phenotypically and genotypically characterize 174 E. coli showing non-susceptibility to quinolones
isolated from environmental samples from pig farms. Antimicrobial susceptibility testing (AST) was performed
using the disk diffusion method. PCR and sequence analysis were performed to identify chromosomal mutations
in the quinolone resistance-determining regions (QRDR) of gyrA and the isolates were screened for the presence
of the plasmid-mediated quinolone resistance (PMQR) genes aac-(6')-Ib-cr, qepA, qnrA, qnrB, qnrC, qnrD and qnrS.
Strain relatedness was assessed by phylogenetic classification and multilocus sequence typing (MLST).

Results: Of 174 isolates, 81% (n = 141) were resistant to nalidixic acid, and 19% (n = 33) were intermediately resistant.
Overall, 68.4% (n = 119) were multidrug resistant. This study revealed a prevalence of 79.9% (n = 139) for gyrA QRDR
mutations, and detected 21.8% (n = 38) isolates with at least one PMQR gene. The two most frequently detected
PMQR genes were qnrB and qnrS (13.8% (n = 24) and 9.8% (n = 17, respectively). E. coli belonging to phylogenetic
group A (48.3%/n = 84) and group B1 (33.3% /n = 58) were the most frequent. E. coli ST10 (n = 20) and ST297 (n = 20)
were the most common STs.

Conclusions: E. coli with non-susceptibility to quinolones are widespread among the environment of Swiss pig farms
and are often associated with an MDR phenotype. In several cases these isolates possess at least one PMQR gene, which
could spread by horizontal gene transfer. E. coli from pig farms have diverse STs, some of which are associated
with human and animal disease.
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Introduction
Bacterial diseases in pigs reared on production farms are
responsible for high morbidity and mortality rates and
subsequently also for increased economic losses [1, 2].
The main indications for antibiotic therapy in pigs in
Switzerland are gastrointestinal and respiratory diseases
[3]. Therapy may include (fluoro)quinolones, which are
categorized by the World Health Organization (WHO)
as critically important antimicrobial agents (CIAs) [4].
Despite the worldwide growth of the pig-farming
industry, monitoring systems on the use of antibiotics in
veterinary medicine have led to reduced antibiotic use in
many European countries, including Germany,
Denmark, The Netherlands, and Sweden [5].
In pig husbandry, the usual way of drug application is

oral, via the feed mixture. This is a practical way of drug
application from a farmer’s point of view, but the draw-
back is the release of antimicrobial substances into the
farm environment [6]. Data from several studies suggest
that there is a link between the agricultural use of anti-
biotics and the prevalence of antibiotic-resistant bacteria
in the pig farm environment, including (fluoro)quino-
lone resistance [7–11].
The pathways of antibiotic residues into the environ-

ment after animal treatment are numerous. Moreover,
certain antibiotics such as fluoroquinolones and tetracy-
clines are not fully metabolized in pigs and their residues
may be detected in dust, manure, sewage, soil, ground-
and surface water and crops [6, 12–15]. These various
antibiotic residue reservoirs are perfect breeding
grounds for resistant bacteria, including (fluoro)quino-
lone resistant E. coli [16]. During a previous study aimed
at analysing the use of fluoroquinolones in Swiss pig
farms (von Ah, et al., manuscript under review), qui-
nolone non-susceptible E. coli were isolated from envi-
ronmental samples (dust, liquid manure and wipe
samples of bay walls) of the farms. The goal of this study
was to characterize these isolates with regard to the two
main mechanisms of (fluoro)quinolone resistance in
Enterobacteriaceae, i.e., the accumulation of mutations in
the Quinolone Resistance Determining Region (QRDR) of
gyrA encoding DNA gyrase, and the acquisition of
plasmid-mediated quinolone resistance (PMQR) genes
[11]. A further aim was to characterize the strains by
phylogenetic grouping and multilocus sequence typing
(MLST).

Material and methods
Strains and data collection
In this study, we analysed 174 E. coli isolates collected
during 2016 by the Division of Swine Medicine of the
Vetsuisse Faculty Zurich (von Ah, et al., manuscript
under review). The collection consisted of strains
obtained using both qualitative and semi quantitative

methods to isolate quinolone resistant E. coli from dust,
wipe and slurry samples from farm environments. For
the qualitative method, an average of 1.91 g of sample
was diluted 1:10 in Enterobacteriaceae Enrichment (EE)
broth (Becton, Dickinson, Heidelberg, Germany) and
incubated at 37 °C overnight. The enrichment was then
spread on RAPID’E. coli agar (Biorad, Munich,
Germany), supplemented with 8 μg/ml nalidixic acid,
and incubated overnight at 37 °C. Using the semi-quanti-
tative approach, an average of 1.97 g of sample, were di-
luted in a ratio of 1:10 in 0.85% saline solution and
homogenized in a Stomacher sample blender (Seward
Medical Ltd., London, UK). The homogenate was spread
in dilution steps of 1:100 and 1:1000, respectively, on
RAPID’E. coli agar plates supplemented with 8 μg/ml
nalidixic acid. One E. coli isolate randomly selected from
each positive sample was collected for further analysis. Iso-
lates with questionable identity on RAPID’E. coli agar were
confirmed by matrix-assisted laser desorption/ionization
time-of- flight mass spectrometry (MALDI-TOF–MS,
Bruker Daltronics, Bremen, Germany).
In total, the strains originated from dust (n = 48),

wipes (n = 56), and slurry (n = 70), collected from 55
different farms (24 farrowing and rearing farms, 23 fat-
tening farms and 8 mating and gestation farms) located
in central and north-eastern Switzerland. All farms were
part of a sow pool system. Of the 55 farms, 23 (41.8%)
reported use of fluoroquinolones during the study period
of 2016, including 16 (66.7%) of the farrowing and
rearing, four (17.4%) of the fattening, and three (37.5%)
of the mating and gestation farms.

Microbiological methods
Antimicrobial susceptibility testing
The antimicrobial resistance profiles of the isolates were
determined using the disk diffusion (Kirby Bauer)
method according to the Clinical and Laboratory Stan-
dards Institute (CLSI) performance standards and break-
points for human clinical isolates [17]. Mueller-Hinton
agar culture medium (Becton Dickinson, Allschwil,
Switzerland) was inoculated with a saline suspension of
isolated colonies adjusted to 0.5 McFarland turbidity
standard. Antibiotic disks (Becton Dickinson and com-
pany, Sparks, MD USA) were used, containing 30 μg
nalidixic acid (NA), 5 μg ciprofloxacin (CIP), 10 μg ampi-
cillin (AM), 20 μg/10 μg amoxicillin/clavulanic acid
(AMC), 30 μg cefazolin (CZ), 30 μg cefotaxime (CTX),
30 μg cefepime (FEP), 23.75 μg /1.25 μg sulfamethoxa-
zole/trimethoprim (SXT), 30 μg chloramphenicol (C),
15 μg azithromycin (AZM), 30 μg tetracycline (TE),
10 μg streptomycin (STR), 30 μg kanamycin (K), 10 μg
gentamicin (GM), 300 μg nitrofurantoin (FM), and
200 μg fosfomycin (FOS). After 18 h of incubation at
35 °C ± 2 °C, results were interpreted as either sensitive
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(S), intermediate (IR), or resistant (R) according to the
zone diameters around the disks using CLSI breakpoints
[17]. Results were confirmed to be within the quality con-
trol ranges described by CLSI for E. coli ATCC25922 [17].
Isolates displaying resistance to three or more classes

of antimicrobials (counting β-lactams as one class) were
defined as multidrug-resistant (MDR).

Molecular methods
Analysis of the quinolone resistance-determining region
(QRDR) in gyrA
All strains were examined for mutations in the qui-
nolone resistance-determining regions (QRDRs) of
gyrA, using PCR amplification and sequencing primers
as described previously [18]. Synthesis of primers and
DNA custom sequencing was carried out by Micro-
synth (Balgach, Switzerland). Nucleotide sequences
were analyzed with CLC Main Workbench 8.0.1 and
aligned with the sequence gyrA reference strain E. coli
K-12, substrain MG1655 (GenBank: U00096). For data-
base searches the BLASTN program of the National
Centre for Biotechnology Information (NCBI) (http://
www.ncbi.nlm.nih.gov/blast/) was used.

Detection of plasmid mediated quinolone resistance genes
(PMQR)
The plasmid-mediated fluoroquinolone resistance genes
aac(6′)-Ib-cr, qnrA, qnrB, qnrC, qnrD, qnrS, and qepA
were detected by PCR as described elsewhere [19–25].
Synthesis of primers and DNA custom sequencing was
carried out by Microsynth (Balgach, Switzerland) and
nucleotide sequences were analyzed with CLC Main
Workbench 8.0.1. In addition, qnrB and qnrS genes were
sequenced.
The presence of qnrB was confirmed by PCR as

described by Abgottspon et al., using strain N05–2379
as a positive control [26]. Purified amplicons were
custom sequenced (Microsynth, Balgach, CH) using the
forward primer (qnrB_Seq_F) [26] . Sequences were ana-
lysed using the Basic Local Alignment Search Tool
(BLAST) of the NCBI (https://blast.ncbi.nlm.nih.gov/
Blast.cgi) (Bethesda, USA).
The presence of qnrS confirmed and sequenced as

described by Zurfluh et al., using E. coli OW95E1 as a
positive control and the forward primer (qnrS_orf_F)
[27]. Sequences were analysed as described for qnrB.

Phylogenetic characterization and multilocus sequence
typing
Phylogenetic classification of the E. coli isolates into one
of the eight groups A, B1, B2, C, D, E, F (E. coli sensu
stricto), or Escherichia clade I, was performed as
described by Clermont et al. [28].

Sequence type (ST) determination of the E. coli iso-
lates was carried out as described by Wirth et al. [29].
Sequences were imported into the E. coli multilocus
sequence type (MLST) database (http://enterobase.-
warwick.ac.uk) to determine MLST types and clonal
complexes (CC).

Serotyping of E. coli ST301
Strains belonging to CC165 and ST301 frequently belong
to the unusual O80 serogroup [30]. To test this possibility,
all isolates belonging to ST301 were serotyped. The O80
serogroup was identified by O80-specific PCR using
primers and conditions described previously [30]. The H2
type was determined by PCR targeting the flicH2 gene
with primers described elsewhere [31]. The presence of
the intestinal virulence genes stx, eae and of extra-intes-
tinal virulence genes associated with plasmid pS88 [32]
was evaluated as described previously [33].

Results
Antimicrobial resistance phenotypes
Antimicrobial susceptibility testing by the disc diffusion
method showed that 81% (n = 141) of the strains were
resistant and 19% (n = 33) were intermediately resistant
to nalidixic acid (Table 1). Furthermore, 36.2% (n = 63)
of the isolates were also resistant to ciprofloxacin (Table 1).
Additional antimicrobial resistance was most frequently

observed for streptomycin (72.4% /n = 126), tetracycline
(60.9% /n = 106), sulfamethoxazole/trimethoprim
(50% /n = 87), ampicillin (46.6% /n = 81), kanamycin
(19.5% /n = 34), chloramphenicol (15.5% /n = 27),
and gentamicin (14.4% /n = 25), respectively (Table 1).
Resistance to all other tested antibiotics was detected for
at least one isolate, except to nitrofurantoin (Table 1).
Of the 174 isolates analysed in this study, 68.4%

(n = 119) were resistant to three or more classes of
antibiotics and therefore categorised as MDR. The
most frequent MDR combinations detected were
SXT-TE-STR (n = 15), AM-SXT-TE-STR (n = 10) and
AM-SXT-STR-K (n = 8) (Table 1). E. coli strains
resistant to four and five antibiotics were the most
prevalent (21.3 and 19.0%, respectively).

Molecular properties
Of 141 isolates with a nalidixic acid resistant phenotype,
98.6% (n = 139) possessed at least one nucleotide muta-
tion in the QRDR of gyrA. Thereof, 49.6% (n = 70)
showed single amino acid substitution at codon Ser83,
namely Ser83 to Leu (n = 67), or Asp87 to Tyr (n = 2), or
Asp87 to Gly (n = 1). Further, 48.9% (n = 69) possessed
double substitutions at Ser83 to Leu and Asp87 to Asn
(n = 68) or Tyr (n = 1). Two isolates (isolates no. 65 and
106, respectively) tested negative for mutations in the
QRDR of gyrA (Table 1).
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Table 1 Escherichia coli isolated from dust, wipes and slurry samples from pig farms

Isolate
ID

Farm
ID

Farm
type

FQ
usage

Source NA CIP QRDR
gyrA

PMQR
gene

PG ST CC Additional
resistance

19 11 F&R + D R IR S83L, D87N – B1 453 86 AM, SXT, TE, STR, GM

45 12 F&R + D R R S83L, D87N – B1 162 469 AM, SXT, TE, STR, K

22 13 F&R + D R R S83L, D87N – B1 1642 – AM, SXT, C, TE, STR, K, GM

28 13 F&R + D R R S83L, D87N – B1 1642 – AM, SXT, C, TE, STR, K, GM

40 17 F&R + D R R S83L, D87N – A 10 10 AM, SXT, C, TE, STR

44 17 F&R + D R R S83L, D87N – B1 453 86 AM, SXT, TE, STR, K, GM

8 18 F&R + D R R S83L, D87N – A 2197 – AM, SXT, AZM, C, TE, STR, K, GM

9 18 F&R + D R R S83L, D87N – A 2197 – AM, CTX, SXT, AZM, C, TE, STR, K, GM

54 21 F&R + D R R S83L, D87N – A 2197 – AM, SXT, C, TE, STR, GM

55 21 F&R + D R S S83L – B1 345 – AM, SXT, STR, K

117 22 F&R + D R S S83L – C 90 23 –

126 23 F&R + D R S S83L – A 898 – TE

127 23 F&R + D R S S83L – A 898 – –

129 23 F&R + D R S S83L – A 898 – –

62 29 F&R + D R R S83L, D87N aac(6′)-Ib-cr C 6332 – AM, AMC, CZ, CTX, FEP, SXT, AZM, TE, STR, GM

149 29 F&R + D IR S – qnrS A 542 – SXT, TE, STR

66 30 F&R + D R R S83L, D87N – B1 453 86 AM, SXT, TE, STR, K, GM

160 30 F&R + D IR S – qnrB A new – AM, SXT, TE, STR

168 30 F&R + D IR S – qnrB A 34 10 TE, STR

169 30 F&R + D IR S – qnrB A 43 10 –

2 71 F&R + D R R S83L, D87N – B1 297 – AM, AMC

11 71 F&R + D R S S83L qnrS A 2496 – AM, AMC, STR

145 71 F&R + D IR IR – qnrS A 301 165 SXT, TE, STR

107 73 F&R + D R S S83L – A 10 10 AM, C, TE, STR

109 73 F&R + D R S S83L – A 898 – TE, STR

97 69 FF + D R R S83L, D87N – B1 297 – TE

173 69 FF + D IR S – qnrB E 1607 – –

113 1 M&G + D R S S83L qnrS A 10 10 AM, SXT, STR

164 1 M&G + D IR S – qnrS A new – AM

13 6 M&G + D R S S83L – B1 737 – SXT, TE, STR

14 6 M&G + D R S S83L – B1 737 – SXT, TE, STR

41 17 F&R + W R R S83L, D87N – B1 58 155 AM, SXT, TE, STR

125 22 F&R + W R S S83L – A 4691 – STR

56 23 F&R + W R S S83L – A 1684 – SXT, STR

128 23 F&R + W R S S83L – C 410 23 TE, STR, K

59 26 F&R + W R S S83L – E 302 – AM, STR

139 26 F&R + W R S S83L – E 302 – AM, STR

65 29 F&R + W R S – qnrB E 1607 – SXT, AZM, STR

161 29 F&R + W IR S – qnrB E 1607 – –

67 30 F&R + W R S S83L – A 746 – SXT, TE, STR

141 30 F&R + W R S S83L – E 302 – –

143 30 F&R + W IR S – – E 302 – –

150 30 F&R + W IR S – qnrB A 10 10 SXT, FM, STR
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Table 1 Escherichia coli isolated from dust, wipes and slurry samples from pig farms (Continued)

Isolate
ID

Farm
ID

Farm
type

FQ
usage

Source NA CIP QRDR
gyrA

PMQR
gene

PG ST CC Additional
resistance

3 71 F&R + W R S S83L – A 542 – –

12 71 F&R + W R IR S83L qnrS A 2496 – AM, CZ, STR

137 71 F&R + W R S D87G – A 3630 – –

144 71 F&R + W IR IR – qnrS E new – AM, SXT, TE, STR

99 73 F&R + W R R S83L, D87N – B1 453 86 AM, SXT, TE, STR

101 73 F&R + W R S S83L – A 898 – SXT, TE, STR

102 73 F&R + W R S S83L – A 1684 – SXT, TE, STR

106 73 F&R + W R S – qnrS A 871 – SXT, TE, STR

123 73 F&R + W R S S83L – B1 3695 – –

155 74 F&R + W IR S – – C 23 23 TE, STR, K

119 38 FF + W R S S83L – A 100 165 SXT, TE, STR

152 53 FF + W IR S – qnrB + qnrS E new – AM10, SXT, TE, STR

146 59 FF + W IR S – qnrB + qnrS A 10 10 AM, SXT, TE, STR, K, GM

132 69 FF + W R S S83L, D87N – B1 297 – SXT, TE, STR

163 1 M&G + W IR S – qnrB A 34 10 TE, STR

157 4 M&G + W IR S – qnrB A 1602 – STR

158 4 M&G + W IR S – qnrB A new – STR

115 6 M&G + W R S S83L – D 362 – AM, SXT, C, TE, STR, K

124 6 M&G + W R S S83L – A 93 168 AM, SXT, FOS, STR

20 12 F&R + SL R IR S83L, D87N – B1 297 – TE

21 12 F&R + SL R IR S83L, D87N – B1 297 – TE

27 12 F&R + SL R IR S83L, D87Y – A 10 10 –

23 13 F&R + SL R S D87Y – A 34 10 STR

24 13 F&R + SL R R S83L, D87N – B1 453 86 AM, SXT, TE, STR, K, GM

29 13 F&R + SL R S D87Y – A 34 10 STR

30 13 F&R + SL R S S83L – A 301 165 SXT, STR

31 13 F&R + SL R S S83L – A 301 165 SXT, AZM, STR

25 16 F&R + SL R S S83L – A 10 10 –

26 16 F&R + SL R R S83L, D87N – B1 297 – FOS, TE

42 16 F&R + SL R R S83L, D87N – B1 297 – TE

116 16 F&R + SL R S S83L – A 10 10 –

165 16 F&R + SL R R S83L, D87N – B1 297 – TE

38 17 F&R + SL R R S83L, D87N – B1 297 – –

39 17 F&R + SL R R S83L, D87N – B1 453 86 AM, SXT, TE, STR, GM

43 17 F&R + SL R R S83L, D87N – B1 453 86 AM, SXT, TE, STR, K, GM

156 18 F&R + SL IR S – qnrB A 77 206 AM, SXT, C, STR

166 21 F&R + SL IR S – qnrB A 10 10 SXT, STR

118 26 F&R + SL R S S83L – A 6593 165 STR

130 28 F&R + SL R S S83L – A 93 168 –

136 28 F&R + SL R S S83L – A 93 168 –

167 28 F&R + SL IR S – qnrS A 48 10 AM, TE, STR

63 29 F&R + SL R R S83L, D87N – B1 453 86 AM, SXT, TE, STR

64 29 F&R + SL R R S83L, D87N – B1 453 86 AM, SXT, TE, STR
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Table 1 Escherichia coli isolated from dust, wipes and slurry samples from pig farms (Continued)

Isolate
ID

Farm
ID

Farm
type

FQ
usage

Source NA CIP QRDR
gyrA

PMQR
gene

PG ST CC Additional
resistance

4 71 F&R + SL R R S83L, D87N – A 3902 – AM, SXT, TE, STR

5 71 F&R + SL R IR S83L qnrS A 2496 – AM, CTX, FOS, AZM, STR

6 71 F&R + SL R IR S83L, D87N – B1 162 469 AM, SXT, TE, STR, K

7 71 F&R + SL R R S83L, D87N – B1 162 469 AM, SXT, TE, STR, K

10 71 F&R + SL R IR S83L qnrS A 2496 – AM, STR

100 73 F&R + SL R S S83L – A 10 10 AM, C, TE, STR

108 73 F&R + SL R S S83L – A 10 10 AM, C, TE, STR

122 73 F&R + SL R S S83L – A 10 10 AM, C, TE, STR

85 53 FF + SL R R S83L, D87N – B1 162 469 STR

96 69 FF + SL R R S83L, D87N – B1 297 – TE

1 1 M&G + SL R S S83L – B1 156 156 SXT, STR

15 6 M&G + SL R R S83L – B1 737 – SXT, TE, STR

114 6 M&G + SL R S S83L – B1 737 – SXT, TE, STR

135 6 M&G + SL R S S83L – A 93 168 –

34 14 F&R – D R R S83L, D87N – E 1011 – AM

35 14 F&R – D R R S83L, D87N – E 1011 – AM

49 20 F&R – D R R S83L, D87N – A 744 – AM, SXT, C, TE, STR, K, GM

53 20 F&R – D R IR S83L, D87N – A 2197 – AM, SXT, C, TE, STR, GM

138 20 F&R – D R S S83L – B1 58 155 AM, SXT, TE, STR

50 24 F&R – D R R S83L, D87N – A 10 10 AM, SXT, C, TE, STR

57 25 F&R – D R R S83L, D87N – A 744 – AM, SXT, C, TE, STR, K

60 25 F&R – D R R S83L, D87N – A 744 – AM, SXT, C, TE, STR, K

105 70 F&R – D R S S83L – B1 847 – AM, SXT, STR, K

98 72 F&R – D R R S83L, D87N – B1 297 – AM, CTX

104 72 F&R – D R R S83 L, D87N – B1 new – SXT, TE, GM

82 52 FF – D R R S83L, D87N – B1 1431 – SXT

87 54 FF – D R S S83L – C 88 23 AM, SXT, TE, STR, K

153 57 FF – D IR S – qnrB B1 99 – TE, STR

133 61 FF – D R S S83L – A 93 168 –

95 67 FF – D R S S83L – B1 737 – SXT, TE, STR

112 78 M&G – D R R S83L, D87N – C 90 23 AM, SXT, TE, STR, GM

32 14 F&R – W R S S83L – C 88 23 AM, SXT, STR, K

33 14 F&R – W R S S83L – C 88 23 AM, SXT, STR, K

48 20 F&R – W R R S83L, D87N – A 2197 – AM, SXT, C, TE, STR, GM

51 20 F&R – W R R S83L, D87N – B1 297 – TE

52 20 F&R – W R R S83L, D87N – B1 297 – TE

46 24 F&R – W R R S83L, D87N – A 10 10 AM, SXT, C, TE, STR

140 70 F&R – W IR S – – F 117 – –

120 76 F&R – W R S S83L – C 23 23 –

61 35 FF – W R S S83L – B1 847 – SXT, TE, STR, GM

70 35 FF – W R S S83L – B1 new – SXT, TE, STR

162 35 FF – W IR S – qnrS A 227 10 TE, STR, K

76 47 FF – W R S S83L – A 898 – TE, STR

Kindle et al. Porcine Health Management             (2019) 5:9 Page 6 of 12



Table 1 Escherichia coli isolated from dust, wipes and slurry samples from pig farms (Continued)

Isolate
ID

Farm
ID

Farm
type

FQ
usage

Source NA CIP QRDR
gyrA

PMQR
gene

PG ST CC Additional
resistance

74 50 FF – W R R S83L, D87N – B1 297 – TE

78 50 FF – W R R S83L, D87N – A 2509 – AZM, TE, STR

80 50 FF – W R R S83L, D87N – B1 297 – TE

81 52 FF – W R R S83L, D87N – B1 297 – TE

86 54 FF – W R S S83L – C 88 23 AM, SXT, TE, STR, K

89 58 FF – W R S S83L – B1 58 155 SXT, TE, STR

91 63 FF – W R S S83L – C 88 23 AM, SXT, STR, K

90 65 FF – W R R S83L, D87N – B1 297 – TE

94 66 FF – W R R S83L, D87N – B1 297 – TE

172 68 FF – W IR S – qnrB A 993 – TE, STR

147 7 M&G – W IR IR – qnrB + qnrS A 10 10 AM, SXT, TE, STR, GM

148 7 M&G – W IR S – qnrB + qnrS A 10 10 AM10, SXT, TE, STR, GM

174 78 M&G – W IR S – qnrB B1 3322 86 AM, STR, GM

36 14 F&R – SL R S S83L – F 117 – AM, SXT, C, TE, STR

37 14 F&R – SL R R S83L, D87N – A 2197 – AM, SXT, C, TE, STR, GM

47 24 F&R – SL R R S83L, D87N – A 10 10 AM, SXT, C, TE, STR

58 25 F&R – SL R R S83L, D87N – A 744 – AM, SXT, C, TE, STR, K

68 33 F&R – SL R R S83L, D87N – A 2509 – AM, TE, STR

69 33 F&R – SL R R S83L, D87N – A 2509 – AM, TE, STR

103 72 F&R – SL R R S83L, D87N – A 10 10 AM, AMC, SXT, C, TE, STR, K

151 35 FF – SL IR S – qnrB B1 1665 – K

71 37 FF – SL R R S83L, D87N – A 2509 – TE, STR

121 42 FF – SL R S S83L – B1 1157 – AM, SXT, TE, STR

75 45 FF – SL R S S83L – C 88 23 AM, SXT, STR

73 47 FF – SL R S S83L – A 898 – TE, STR

77 47 FF – SL R S S83L – A 898 – TE, STR

79 49 FF – SL R R S83L, D87N – B1 297 – SXT, TE, STR, K, GM

72 50 FF – SL R R S83L, D87N – A 2509 – TE, STR

170 50 FF – SL IR S – qnrB B1 99 – TE, STR

83 52 FF – SL R R S83L, D87N – B1 297 – TE

154 57 FF – SL IR S – qnrS A 542 – TE, STR, K

84 58 FF – SL R S S83L – C 88 23 AM, SXT, STR, K

88 58 FF – SL R S S83L – C 88 23 AM, SXT, STR, K

171 63 FF – SL IR S – qnrB E 524 32 –

93 64 FF – SL R R S83L, D87N – B1 453 86 AM, SXT, TE, STR

92 65 FF – SL R S S83L – C 88 23 AM, SXT, STR, K

131 68 FF – SL R S S83L – A 93 168 –

111 77 FF – SL R R S83L, D87N – B1 1196 – AM, SXT, C, TE, STR

134 77 FF – SL R S S83L – A 10 10 AM, C, STR

159 8 M&G – SL IR S – qnrB A 4429 – STR

16 9 M&G – SL R R S83L, D87N – A 10 10 AM, SXT, C, TE, STR

17 9 M&G – SL R R S83L, D87N – C 410 23 TE

18 10 M&G – SL R S S83L – A 6593 165 STR
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A total of 38 strains possessed one or more PMQR
genes, representing 21.8% of the 174 analysed strains
(Table 1). Among the 19.5% (n = 34) of the isolates with
one PMQR gene, twenty (11.5%) possessed qnrB,
thirteen (7.5%) qnrS and one isolate (0.6%) possessed
aac(6′)-Ib, respectively (Table 1). Four isolates (2.3%)
possessed a combination of qnrB and qnrS genes. No
isolates tested positive for qnrA, qnrC, qnrD or qepA.
The occurrence of PMQR positive isolates was remar-
kably higher in strains exhibiting intermediate resistance
to nalidixic acid (90.9% /n = 30), than in nalidixic acid
resistant strains (5.7% /n = 8). Moreover, all qnrB/qnrS
combinations were detected in intermediately resistant
isolates (Table 1). Isolates possessing PMQR were found
in 11 (22.9%) of the dust samples 16 (28.6%) of the wipe
samples. and 11 (15.7%) of the slurry samples (Table 1).
Of the 23 farms with reported use of fluoroquinolones,

12 (52.2%) yielded environmental E. coli containing
PMQR genes. Thereof, the majority (7 farms/58.3%)
were farrowing and rearing farms, three (25%) were fat-
tening farms and two (16.7%) were mating and gestation
farms (Table 1).
By contrast, of the 32 farms without a history of

fluoroquinolone use during the study period, nine
(28.1%) tested positive for E. coli harbouring PMQR
genes. Thereof, five (55.6%) were fattening farms, four
(44.4%) were mating and gestation farms, and none (0%)
were farrowing and rearing farms (Table 1).

Phylogenetic grouping
The majority of the isolates were assigned to phylo-
genetic groups A (48.3%/n = 84) and group B1 (33.3%
/n = 58). The remaining strains were classified into
group C (9.8% /n = 17), E (6.9%/n = 12), F (1.1%/n = 2)
and D (0.6%/n = 1), respectively (Table 1). None of
the isolates belonged to phylogenetic group B2.

MLST
Overall, a total of 50 STs were found. The most
common sequence types were ST10 (n = 20), ST297
(n = 20), ST453 (n = 10), ST88 (n = 9), ST898 (n = 8),
ST93 (n = 6), ST2197 (n = 6), ST737 (n = 5), and

ST2509 (n = 5) (Table 1). Seven isolates could not be
assigned to any known ST, because the allele combi-
nations were new (Table 1). The allele combinations
are listed in Additional file 1: Table A1.

Characteristics of E. coli ST301 isolates
Three isolates belonged to ST301 (Table 1). Thereof,
two (isolates 30 and 31, respectively) belonged to sero-
type O80:H2 and possessed the eae-ξ variant. None of
the isolates harboured stx or any genes related to pS88.
Both isolates were therefore classified as enteropatho-
genic E.coli (EPEC).

Discussion
Resistance profiles
In the present study, we determined the prevalence of
point mutations within the QRDR of gyrA and the pre-
sence of PMQR genes among 174 E. coli isolated from
pig farm environments. All isolates were non-susceptible
to quinolones and, using the disk diffusion method, were
classified as intermediate or as resistant to nalidixic acid.
All resistant isolates except two, possessed at least one

mutation in gyrA. Notably, both these isolates possessed
a PMQR gene, (isolate 65 possessed qnrB, and isolate
106 qnrS, respectively). Since qnr genes alone are insuffi-
cient to confer resistance [34–36], further mechanisms
are likely associated with the resistance phenotype of
these strains, such as mutations in the QRDR regions of
the gyrB, parC genes, or increased efflux pump activity
(both not evaluated in this study).
Of the 70 nalidixic acid resistant strains possessing

one mutation in gyrA, only one (0.7%) was resistant to
ciprofloxacin. By contrast, of the isolates with double
mutations in gyrA, the majority (89.9%) were also resis-
tant to ciprofloxacin. These observations correlate with
previous studies that link the number of quinolone
resistance-associated mutations and the resistance
phenotype of an isolate [37, 38].
In this study, only a minority of the resistant strains

carried PMQR genes, and, except for aac(6′)-Ib-cr, none
of the PMQR genes were associated with ciprofloxacin
resistance. Isolates with qnrS also possessed a Ser83 to

Table 1 Escherichia coli isolated from dust, wipes and slurry samples from pig farms (Continued)

Isolate
ID

Farm
ID

Farm
type

FQ
usage

Source NA CIP QRDR
gyrA

PMQR
gene

PG ST CC Additional
resistance

142 10 M&G – SL IR S – qnrB A 48 10 STR

110 78 M&G – SL R R S83L, D87N – C 90 23 AM, SXT, TE, STR, GM

AM ampicillin, AMC amoxicillin with clavulanic acid, AZM azithromycin, C chloramphenicol, CC clonal complex, CIP ciprofloxacin, CTX cefotaxime, CZ cefazolin, D
dust sample, F&R farrowing and rearing farm, FEP cefepime, FF fattening farm, FM nitrofurantoin, FOS fosfomycin, GM gentamicin, IR intermediately resistant, K
kanamycin, M&G mating and gestation farm, NA nalidixic acid, new new combination of alleles (detailed in Additional file 1: Table A1); PG phylogenetic group,
PMQR plasmid-mediated quinolone resistance, QRDR quinolone resistance-determining region, R resistant, S susceptible, STR streptomycin, SL slurry sample, SXT
sulfamethoxazole/trimethoprim, ST sequence type, TE tetracycline, W wipe sample; +, use of fluoroquinolone during study period 2016; −, no use of
fluoroquinolone during study period 2016; −–, absence of point mutation, gene, CC, or additional resistance
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Leu substitution in the gyrA QRDR and showed de-
creased susceptibility to ciprofloxacin. Two further re-
sistant isolates harbouring qnrS or qnrB lacked
mutations in the gyrA QRDR and were susceptible to
ciprofloxacin. In short, these data correlate with results
from previous studies on the coexistence of different
resistance mechanisms in one isolate [37–39].
Notably, the vast majority (90.9%) of strains with inter-

mediate resistance to nalidixic acid were associated with
the presence of qnrB, qnrS or a combination thereof.
The three remaining intermediately resistant isolates
lacking both gyrA mutations and aac(6′)-Ib-cr, qnrA,
qnrB, qnrC, qnrD, qnrS, or qepA genes, are likely to pos-
sess other resistance-mechanisms that we did not screen
for in the present study, e.g., point mutations within the
QRDR of gyrB or in the topoisomerase genes parC or
parE [11]. Four isolates possessed a combination of qnrB
and qnrS genes but remained intermediately resistant to
nalidixic acid. These results are in agreement with the
findings of other studies [40, 41], which demonstrate
that the presence of two different qnr genes in the same
strain has no additive effect on resistance levels. Further,
our data correlate with previously mentioned studies
concerning the coexistence of different resistance
mechanisms in one isolate [37–39].
The predominance of PMQR among isolates that lack

gyrA mutations is noteworthy, since these genes are
known to facilitate the selection of resistant mutants.
Data from other studies [42, 43] suggest that, depending
on which mutations are already present in a strain, the
acquisition of further fluoroquinolone resistance genes
could increase the strain’s fitness.
In this study, the most frequent PMQR genes were

qnrB and qnrS, respectively. Correlating with our data, it
has been reported previously that qnrB is the most
frequent PMQR gene, followed by qnrS. [11, 36, 44, 45].
The presence of qnr genes in environmental E. coli indi-
cates that selection could occur without exposure to
inhibitory concentrations of fluoroquinolones. It has
been demonstrated previously for environmental
Klebsiella pneumoniae isolated from wastewater that qnr
genes confer a selective advantage in the presence of
residual subinhibitory fluoroquinolone concentrations
present in wastewater [46] Accordingly, pig farms with a
history of (in-feed) application of fluoroquinolones may
represent environments containing residual concen-
trations of antibiotics which propagate PMQR genes.
Our data suggest that this may hold true in particular
for farrowing and rearing farms, where such genes were
detected exclusively on farms with a history of use of
fluoroquinolones. Environmental pollution with residual
fluoroquinolones is facilitated by their poor degradability
and strong potential for binding to sediments [47]. In
the absence of solar radiation some fluoroquinolones

(enrofloxacin) remain stable for at least 120 days [48]. In
their long-term experimental study Xu and colleagues
[49] stated that the application of swine manure lead to
an increase of fluoroquinolone resistances in soil, inclu-
ding PMQR genes, which persisted at least five months.
On farms without prior treatment of animals, strains
harbouring quinolone resistance genes may be intro-
duced during transfer of pigs from other locations, com-
parable to inter-farm transmissions of extended-
spectrum ß-lactamase (ESBL) producing E. coli in pigs
[50]. Our data suggest that this may especially be the
case for mating and gestation farms and for fattening
farms, where, in contrast to farrowing and rearing farms,
environmental contamination with E. coli harbouring
PMQR genes was detected irrespective of the history of
fluoroquinolone treatment. These findings suggest that
animal movement to and from farrowing and rearing
farms with recent histories of treatment may promote
the risk of transmission of resistant bacteria and of
fluoroquinolone resistance genes among farms within
sow pool systems.
Apart from direct transmission of resistant E. coli,

PMQR genes can be transferred horizontally to other
bacteria in the pig farm environment. Exposure to quin-
olones of bacteria containing qnr genes may increase
their capacity to acquire point mutations in the gyrase
and/or topoisomerase IV genes [46]. PMQR genes are
often harboured on plasmids containing other resis-
tance genes, e.g., ß-lactamases [51], thus, the use of
non-fluoroquinolone antimicrobials enables their
co-selection [52].
Overall, the resistance profiles of the isolates described

in this study are in agreement with previous studies that
have demonstrated that some of the most common anti-
biotic resistances (other than to quinolones) in E. coli in
the pig environment are to tetracycline, ampicillin,
streptomycin and sulfamethoxazole [53, 54], and that E.
coli strains from the pig environment often are resistant
to four or five antibiotics simultaneously [55].

Phylogenetic grouping, MLST and serotyping of ST301
The majority of the isolates belonged to phylogenetic
groups A or B1. The predominance of ST10 among the
E. coli belonging to group A reflect previous obser-
vations regarding isolates from pigs, chicken faeces, as
well as retail chicken and pork meat [56, 57]. Further-
more, Araùjo et al. [58] observed that E. coli ST10 and
ST297 were the predominant sequence types among
MDR isolates isolated from irrigation water and vege-
tables in household farms, highlighting the wide disse-
mination of this sequence type and its association with
MDR. Notably, E. coli ST10 (CC10), as well as E. coli
CC23 also identified in this study, both including
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ciprofloxacin resistant and MDR strains, are also
associated with urinary tract infection and sepsis in
humans [59].
In addition, several other E. coli belonging to phylo-

genetic group A identified in this study have been asso-
ciated with disease in food producing animals, such as
avian pathogenic E. coli ST93 [60], E. coli ST744 isolated
from diseased calves [61], and strains belonging to
CC165 from food producing animals [62]. Notably,
among the latter, we detected two EPEC O80:H2
isolates, which is considered an emerging pathogen
among calves in Belgium [63]. This serotype has
emerged among humans as a highly virulent extra-intes-
tinal pathogenic Shiga-toxin producing E. coli (STEC) in
France and Switzerland since 2015 [30, 33]. As opposed
to the STEC O80:H2 found in humans, the isolates from
this study lacked pS88-associated extra-intestinal viru-
lence genes. Therefore, the relationship between EPEC
O80:H2 isolated from the farm environment and human
STEC isolates needs to be assessed, e.g. by whole genome
sequencing, and the prevalence of EPEC O80:H2 in pigs
should be established.
E. coli strains belonging to the phylogenetic group B1

are for the most part commensal, with the ability to
persist in the environment [64]. Most ST of this
phylogroup, such as ST58, ST162, or ST453 have been
frequently detected among healthy livestock [65]. How-
ever, E. coli ST297, which was one of most frequently
observed ST in this study, has been associated with
disease in both poultry and humans [66]. Likewise,
E. coli ST453 is known to cause extraintestinal
disease in humans (urinary tract infections) and
metritis in cattle [67].
A minority of strains were assigned to the extraintesti-

nal virulent phylogroups D and F. Among these, we
detected two MDR strains belonging to ST117 which is
a well-recognized avian pathogenic E. coli with zoonotic
potential [68].

Conclusions
Quinolone non-susceptible E. coli are widespread in the
environment of Swiss pig farms. In particular, isolates
showing intermediate resistance to nalidixic acid
frequently possess transmissible PMQR genes. This is
worrisome, since the presence of qnr genes may increase
the ability of bacteria to acquire point mutations in the
gyrase and topoisomerase IV genes, resulting in high
level resistance to (fluoro)quinolones. Furthermore, plas-
mids harbouring qnr genes may contribute to the hori-
zontal spread of antibiotic resistance in livestock and in
the environment. In pig farms which are part of sow
pool systems, inter-farm measures that aim to reduce
the risk of spreading resistant bacteria and resistance
genes from one stage of production to the next need to

be assessed and promoted. Our data further show that
farm environments contain commensal MDR E. coli as
well as E. coli with zoonotic potential. In particular, we
demonstrate for the first time the presence of EPEC
O80:H2 in an environmental sample from a pig farm.
In order to preserve the usefulness of fluoroquinolones

and to protect animal and human health, surveillance of
antimicrobial resistance is warranted. Measures for
prudent use of (fluoro)quinolones as provided by the
European Union’s guidelines for use of antimicrobials in
veterinary medicine are of utmost importance [69].

Additional file

Additional file 1: Table A1. Results of the MLST analysis for E. coli
strains with new STs. (DOCX 26 kb)
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