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Abstract

Background: Improving feed efficiency is economically and environmentally beneficial in the pig industry. A
deeper understanding of feed efficiency is essential on many levels for its highly complex nature. The aim of this
project is to explore the relationship between fecal metabolites and feed efficiency-related traits, thereby identifying
metabolites that may assist in the screening of the feed efficiency of pigs.

Results: We performed fecal metabolomics analysis on 50 individuals selected from 225 Duroc x (Landrace x
Yorkshire) (DLY) commercial pigs, 25 with an extremely high feed efficiency and 25 with an extremely low feed
efficiency. A total of 6749 and 5644 m/z features were detected in positive and negative ionization modes by liquid
chromatography-mass spectrometry (LC/MS). Regrettably, the PCA could not classify the the samples accurately. To
improve the classification, OPLS-DA was introduced. However, the predictive ability of the OPLS-DA model did not
perform well. Then, through weighted coexpression network analysis (WGCNA), we found that one module in each
positive and negative mode was related to residual feed intake (RFI), and six and three metabolites were further
identified. The nine metabolites were found to be involved in multiple metabolic pathways, including lipid
metabolism (primary bile acid synthesis, linoleic acid metabolism), vitamin D, glucose metabolism, and others. Then,
Lasso regression analysis was used to evaluate the importance of nine metabolites obtained by the annotation
process.

Conclusions: Altogether, this study provides new insights for the subsequent evaluation of commercial pig feed
efficiency through small molecule metabolites, but also provide a reference for the development of new feed
additives.
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Background
Feed remains the main input cost in all animal produc-
tion. Additionally, pork is one of the most important
sources of meat for human beings. To cope with increas-
ing market demand and breeding costs, improving the
feed efficiency (FE) of pigs has always been a concern of
breeders. Since FE cannot be measured directly for its
complex pleiotropy, the feed conversion ratio (FCR) and
residual feed intake (RFI) are often used as alternative
selection conditions for FE [1–4]. However, although
RFI traits have a strong genetic correlation with FCR
(0.76 to 0.99) [5], a unified indicator for evaluating feed
efficiency has not yet been determined.
At present, there are various omics methods to explore

the molecular mechanisms that affect the feed efficiency
of pigs, including transcriptomics [6, 7], genomics [5]
and 16S rRNA gene sequencing [8]. However, metabolo-
mics is rarely used to study pig feed efficiency pheno-
types. Metabolites produced by the intestinal microbiota
are increasingly recognized as an important part of hu-
man physiology [9]. As the downstream of the gene
regulation network and protein interaction network, the
metabolite can provide more detailed biological terminal
information. By analyzing the changes in the expression
of metabolites, it can help researchers find novel bio-
markers and further understand the currently known
metabolic pathways so that they can be applied to the
study of various apparent traits. Furthermore, fecal me-
tabolites are the final products of the metabolism of cells
and intestinal microbiota, which can help to reflect the
absorption and digestion of nutrients by the intestinal
flora and digestive tract more comprehensively. Finally,
the analysis of fecal metabolomics provides a noninva-
sive way to study the correlation between biological
traits and metabolites. Therefore, the fecal metabolome
can not only partially explain the composition of the gut
microbiota but also be used as biomarkers to investigate
the relationship between gut microbial metabolism and
host phenotypes [10].
Duroc × (Landrace × Yorkshire) (DLY) commercial

pigs has the advantages of high lean meat rate, low back-
fat thickness, high water holding capacity (WHC), suit-
able pH value (pH 1 > 5.9; 6.2 > pH 2 > 5.5) and IMF
content (about 2.5%) for pork, etc. [11]. Desired carcass
and meat quality traits makes DLY pigs currently ac-
count for the largest sales share in the Chinese pork
market. Therefore, exploring the factors that affect the
feed efficiency of DLY pigs has great significance for im-
proving the economic benefits of the swine industry.
Liquid chromatography-mass spectrometry (LC/MS) is

a relatively high-resolution separation analysis technique.
Because of its high sensitivity, wide dynamic range, and
lack of derivatization, LC-MS analysis has become a
common technique for metabolomics research [12, 13].

However, few studies have used LC/MS technology to
analyze the relationship between the fecal metabolome
and feed efficiency. Hence, in this project, we analyzed
the metabolomics of feces based on high and low feed
efficiency groupings, aiming to unearth some small mo-
lecular metabolites that can evaluate feed efficiency and
provide a new perspective for feed management in the
pig industry.

Results
Difference analysis of FE-related traits
The summary of FE-related phenotypic data, such as
average daily feed intake (ADFI), body weight (BW) and
average daily gain (ADG), are shown in Table 1 and
Supplementary Table S1. The calculated FCR and RFI
data were used to compare the differences between the
high- and low-FE groups. There were significant differ-
ences in the FCR phenotype between these two groups
(p < 0.0001, ANOVA) (Fig. 1A). Similarly, the RFI of the
low-FE group was significantly higher than that of the
high-FE group (p = 0.0019, unpaired t-test) (Fig. 1B).

Statistics and analysis of different metabolites
By liquid chromatography-mass spectrometry, a total of
5644 and 6749m/z features were detected in negative
and positive ionization modes, respectively. Our results
showed that there was no clear separation between the
high-FE and low-FE groups by PCA analysis (Fig. S1).
Furthermore, we used the OPLS-DA model, which is a
powerful statistical modeling tool, to identify differential
metabolites between the two groups (Fig. 2). The ellipses
in score plots for OPLS-DA were defined as the 95%
critical limit of the Hotelling T2. For OPLS-DA analysis
in both positive and negative ionization modes, the re-
sults showed that there was a complete separation be-
tween the high-FE group and the low-FE group (R2X =
0.357, R2Y = 0.966 and Q2Y = 0.292 in positive mode;
R2X = 0.330, R2Y = 0.948 and Q2Y = 0.178 in negative
mode) (Fig. 2A, B). In positive and negative ion modes,
the first two components of the OPLS-DA explained
24.8 and 21.2% of the variance, respectively. From the
results of OPLS-DA, it can be found that although there
was a clear differentiation between the two groups in the
positive and negative modes, a lower Q2Y value indi-
cated poor predictability and low quality of the model.

Metabolism network analysis
Referring to the results of the above difference analysis,
we tried to use another approach to explore the associ-
ation between metabolome networks and phenotypes.
WGCNA is a method of grouping genes with similar
gene expression patterns into a module and finding the
hub gene in the module. This analysis was then per-
formed in the positive and negative ion modes. By
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calculating the adjacency between metabolic features
and merging the closer modules, a total of 14 (14) mod-
ules were obtained in positive (negative) modes (Fig. S2).
Then, by constructing the correlation matrix between
the modules and the phenotypic data related to feed effi-
ciency, the module with the closest correlation to the
sample traits was identified. Our results showed that the
metabolites of the MEtan module had the strongest cor-
relation with RFI traits in positive modes (r = 0.42, p =
0.004) (Fig. 3A). Similarly, the MEgreenyellow module in
negative mode was positively correlated with RFI (r =
0.44, p = 0.002) (Fig. 3C). In the MEtan (MEgreenyellow)
module, a total of 31 (20) metabolic features with im-
portant contributions were screened from 65 (145) fea-
tures (Module Membership = 0.8, Gene significance =
0.2) (Fig. 3B, D). After annotation, we obtained six and
three metabolites in the positive and negative modes, re-
spectively (Table S2). The pathways involved in the nine
metabolites can be roughly divided into four categories,
including lipid metabolism (primary bile acid synthesis,
linoleic acid metabolism), vitamin D, glucose
metabolism, and others. Separately, three metabolites,
3a,7a,12a-trihydroxy-5b-cholestan-26-al (THC26),
3alpha,7alpha- dihydroxycoprostanic acid (DHCA) and

5β-cholestane-3α,7α,12α,22-tetrol (22-OH-THC), which
were negatively correlated with RFI, were related to the
synthesis of primary bile acids (KEGG ID: M00120).
C24:5n-6,9,12,15,18 (C24:5n-6) was involved in the me-
tabolism of linoleic acid (KEGG ID: M00592). There are
two metabolites belonging to the vitamin D category, in-
cluding (10S)-1α,19,25-trihydroxy-10,19-dihydrovitamin
D3 and (22E)-1α-hydroxy-22,23- didehydrovitamin D3.
The above six metabolites in the negative ion mode were
all negatively correlated with RFI. The metabolite 2-
Keto-3-deoxy-D-gluconic acid (KDG) is involved in glu-
cose metabolism (KEGG ID: M00052). The remaining
two metabolites are 6-hydroxyhexanoic acid and m-
coumaric acid.

Lasso regression
After identifying hub genes, we performed Lasso regres-
sion analysis on the nine annotated metabolites for fea-
ture selection. From the analysis results of WGCNA, we
regrouped the samples into high- and low-FE groups
based on the RFI values of individuals. To detect the
quality of the model, the ROC curve was used to reflect
its specificity and sensitivity. The results showed that the
model has excellent prognostic effectiveness, with AUCs

Table 1 Phenotypic data for the two groups of female pigs selected for high (n = 25) or low feed efficiency (n = 25)

Class Variable Starting day of
grow-finishing phase

Final day of
grow-finishing phase

Starting
BW, kg

Final
BW, kg

ADFI,
kg/d

ADG, kg
/d

RFI FCR

High FE Average 30.2 111 30.8 100 1.96 0.864 −0.077 2.29

Standard deviation 4.54 8.26 1.22 0.930 0.167 0.061 0.095 0.079

Low FE Average 29.6 118 30.9 99.7 2.01 0.82 0.038 2.60

Standard deviation 3.30 8.61 1.38 1.23 0.162 0.098 0.146 0.089

P-value – 0.884 5.59 × 10−2 0.984 0.023 0.28 6.43 × 10−1 1.90 × 10−2 < 0.0001

Statistical significance was determined using one-way ANOVA, unpaired Student t-test and Wilcoxon rank sum test. BW body weight; ADFI average daily feed
intake; ADG average daily gain; RFI residual feed intake; FCR, feed conversion ratio

Fig. 1 Boxplot of feed efficiency (FE)-related phenotypes. Differences in (A) FCR and (B) RFI trait between high- and low-FE groups. H-FE, high-
feed efficiency; L-FE, low-feed efficiency; FCR, feed conversion ratio; RFI, residual feed intake. *** p < 0.0001. **p < 0.01
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of the training set and the test set of 0.8817 and 0.8542,
respectively (Fig. 4A). Subsequently, to evaluate the most
valuable potential biomarkers, we ranked the importance
of each metabolite according to the absolute value of the
regression coefficient in the regression model (Fig. 4B).

Discussion
Improving the feed efficiency traits of livestock is of
great significance, but it is not easy to estimate. There-
fore, any measure that can effectively predict feed effi-
ciency is meaningful for production. Although there is
currently much work to study FE at the genetic level,
few studies have linked metabolites to feed efficiency
phenotypic traits. In this study, we analyzed and com-
pared the metabolites in the feces of pigs in the high-FE
and low-FE groups by LC-MC technology and interpret-
ation tools, including WGCNA and Lasso regression. To
the best of our knowledge, this is the first report com-
bining these methods to study the metabolomic profile
related to feed efficiency and related traits in DLY pigs.
At present, FCR and RFI are commonly used to evalu-

ate FE traits, and it is believed that RFI can better repre-
sent feed efficiency [2, 3, 14], which is consistent with
our WGCNA analysis results. The RFI and FCR are con-
tinuously varying quantitative traits, and the factors af-
fecting quantitative traits are diverse and have different
weights. There are two strategies to analyze and study
quantitative traits: (i) one is to group quantitative traits
according to thresholds, our PCA and OPLS-DA analysis
was to directly determine the experimental animals into
two groups of high or low feed efficiency and then
analyze them. This analysis method can identify the in-
fluencing factors that affect the phenotype with greater
weight as soon as possible; (ii) another strategy is to cor-
relate the values of quantitative traits directly with the
influencing factors. The WGCNA correlation analysis
we performed can more comprehensively take into ac-
count the continuity effect of metabolite changes on the
phenotype. The two methods can play a complementary

role, facilitating a more rapid and comprehensive search
for factors influencing traits. In short, the two methods
can play a complementary role, facilitating a quick and
comprehensive search for factors affecting the trait.
In our data, we found that the use of powerful tools

such as PCA and OPLS-DA were not sufficient to distin-
guish the different features between the high- and low-
FE animals. There are many possible explanations for
the unsatisfactory results of PCA and OPLS-DA, includ-
ing but not limited to (1) the sampling process was car-
ried out after the individual growth indicators were
measured. When the pig reaches the weight (approxi-
mately 100 kg), its metabolic activity is often not as ac-
tive as before, and the increase in weight has little effect
on the growth performance of pigs after 100 kg [15].
Notably, collected fecal samples should be immediately
stored at − 80 °C to − 20 °C temperature until processed
to avoid microbial fermentation. Sample storage is a crit-
ical and sensitive step, and freeze-thaw cycles need to be
minimized to prevent possible metabolite degradation
[16]. Additionally, to maximize avoidance of additional
variability, although difficult to achieve, we recommend
collecting fecal samples from multiple time points per
individual and analyze an aliquot of the homogenized
and mixed samples, or by metabolic characterization of
multiple samples from each animal to minimize this
variability [17]; (2) throughout the experiment, all test
subjects were clinically healthy. In contrast, liver metab-
olism and skeletal muscle metabolism are greatly af-
fected in infected or inflamed piglets and a significant
decrease in growth performance will be observed in
growing pigs [18]. Therefore, there is no physiological
interference between the FE groups that could cause
large metabolome differences; (3) the number of animal
individuals in our study (25 individuals per group) may
not have high statistical power, so more animal groups
and more targeted experimental designs may be needed
to evaluate feed efficiency in the future. Because the re-
sults of the PCA and OPLS-DA models were not ideal,

Fig. 2 (Orthogonal) Partial Least Squares Discrimination Analysis ((O) PLS-DA) score plots. The analysis was based on LC/MS data of fecal samples
from H-FE (green) and L-FE (red) of (A) positive and (B) negative modes
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we then adopted WGCNA analysis to select the modules
and metabolites most closely related to RFI and FCR.
After screening and annotation, we obtained nine me-
tabolites in these models. Based on these metabolites, we
identified four pathways from the KEGG database that
were also significantly related to feed efficiency, includ-
ing lipid metabolism (primary bile acid synthesis, linoleic
acid metabolism), vitamin D, and glucose metabolism.
Moreover, the Lasso regression model showed that all
nine annotated metabolites contribute to feed efficiency.

The metabolite 22-OH-THC is a kind of bile alcohol,
which is the end product of catabolism of cholestanoic
acids [19–21]. Bile alcohol may be regarded as an inter-
mediate and side product from the normal pathways in
bile acid biosynthesis [22]. Notably, THC26 and DHCA
were mainly involved in the biosynthesis of primary bile
acids. The specific synthesis process is that cholesterol
7α-hydroxylase (CYP27A1) catalyzes the oxidation of
steroid side chains to form THC26 or DHCA in the
mitochondria of liver cells and then obtains the primary

Fig. 3 Coexpression network analysis of metabolic features. The left panel of the figure shows the correlation between the module and RFI or
FCR in (A) negative and (C) positive models. The right panel of the figure shows the scatter plot of module membership and the gene
significance in (B) MEgreenyellow or (D) MEtan module. Each row corresponds to ME, and each column corresponds to traits; the number in
each module represents the Pearson correlation between the module and RFI or FCR; the number in parentheses represents the p-value of
the correlation
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bile acid cholic acid (CD) or chenodeoxycholic acid
(CDCA) under the catalysis of various enzymes [23–27].
Interestingly, although the synthesis of bile acids is de-
termined by a variety of cytochrome P450 enzymes
(CYPs), both THC26 and DHCA are intermediate prod-
ucts catalyzed by CYP27A1 [28]. Bile acids start from
the catabolism of cholesterol and are the final product of
cholesterol catabolism; they play a critical role in food
digestion and nutrient absorption, helping the absorp-
tion of lipids and fat-soluble vitamins in the intestine
[27, 29–31]. After passing down the intestine with bile,
approximately 95% of bile acids are reabsorbed in the
terminal ileum and circulate back to the liver through
the portal vein [23, 30, 32]. The performance of these
functions of bile acid mainly depends on its entero-
hepatic circulation process, which is of great significance
for nutrient absorption and distribution, metabolic regu-
lation and homeostasis [23, 30, 32–34]. The results of
metabolite network analysis showed that three metabo-
lites related to bile acid synthesis were significantly nega-
tively correlated with RFI traits, which means that they
were positively correlated with feed efficiency. This re-
sult was consistent with our finding that these metabo-
lites had higher levels in the high feed efficiency group.
At present, little is known about the transport of bile
acids and intermediates between different chambers,
which may provide some references for understanding
the important factors in the synthesis of bile acids.
In addition, (10S)-1α,19,25–trihydroxy-10,19-dihydro-

vitamin D3 and (22E)-1α-hydroxy–22,23-didehydrovita-
min D3 belong to vitamin D, which is a steroid
derivative [35, 36]. Vitamin D has various effects on lipid
metabolism and immune system function through its ef-
fects on nuclear hormone receptors (such as vitamin D
receptor and PPARγ) [37, 38]. Similarly, our results were
consistent with the effect of vitamin D on lipid metabol-
ism mediated through these receptors. Previous studies

have shown that the CYP27A1 enzyme can catalyze the
hydroxylation of compounds both in the biosynthesis of
bile acids and the bioactivation of vitamin D3 [39–41].
The acidic pathway (or alternative pathway) of bile acid
synthesis is initiated by CYP27A1, which is a mitochon-
drial cytochrome P450 enzyme widely distributed in
most tissues and macrophages [23, 26]. CYP27A1 cannot
only catalyze the 25-hydroxylation of vitamin D3, which
is required for the conversion of vitamin D3 into a func-
tionally active form, but may also regulate cholesterol
homeostasis by promoting the synthesis of bile acids or
producing active oxysterols [26, 41–43]. Although there
are no current reports on the effect of adding this en-
zyme, this warrants further research. Additionally, me-
tabolite C24:5n-6 was involved in the alpha linolenic
acid and linoleic acid metabolism pathways [44]. Linoleic
acid is the main dietary n-6 polyunsaturated fatty acid
(PUFA), and livestock mainly obtain it from diets such
as vegetable oil, soybeans, and corn [45]. Previous stud-
ies reported that higher n-6 PUFA intake can reduce
liver fat in overweight individuals, improve liver metab-
olism, and regulate the balance between fatty acid oxida-
tion and lipid synthesis [46, 47]. In the process of
linoleic acid metabolism, linoleic acid is catalyzed by the
rate-limiting enzyme fatty acid desaturase-2 (FADS2),
and after a series of extensions, C24:5n-6 is produced by
FADS2 catalyzed C24:4n-6 [48]. Our results showed that
C24:5n-6 correlated negatively and significantly with RFI
traits and was significantly higher in the high-FE group
than in the low-FE group (p = 0.002). Notably, in the
process of linoleic acid metabolism (elongation and de-
saturation), there was no significant difference between
the upstream metabolite linoleic acid in the high and
low FE groups, while the downstream C24:5n-6 was ex-
tremely different in the two groups. Besides, little re-
search has been conducted on these three metabolites
(m-coumaric acids, 6-hydroxyhexanoic acid and 2-keto-

Fig. 4 Assessing the weight of nine metabolites using Lasso regression analysis. A ROC curve of the training set (red) and the test set (green). B
Regression coefficients of nine metabolites in the Lasso model. The y-axis of the graph on the right represents metabolites, and the x-axis
represents the regression coefficient of metabolites
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3-deoxy-d-gluconic acid), and there is still insufficient
evidence to show that they are closely related to feed ef-
ficiency. We hope that with the continuous updating
and refining of metabonomics database, we will have
enough information to intensively elaborated them in
the future. Based on this, these findings can also provide
some references for further analysis of linoleic acid me-
tabolism. Improving feed efficiency is a concern, but
these enzyme and potential metabolic markers deserve
further evaluation and research to clarify their biological
significance.

Conclusions
In this study, the PCA and OPLS-DA models have low
explanatory variances for pig feed efficiency phenotypes.
Then, through WGCNA coexpression analysis, we found
two important modules and 210 potential metabolic fea-
tures related to feed efficiency in the positive and nega-
tive modes. The nine potential metabolic markers
obtained from screening and annotation were assessed
by the Lasso model, which offered possibilities of collect-
ing metabolic hallmarks in feces under minimizing stress
reactions in the future. In short, this study identified im-
portant pathways and candidate biomarkers closely re-
lated to RFI, that contribute to understanding the
molecular mechanism of feed efficiency more compre-
hensively and provides an important reference for fur-
ther verifying the application of metabolite signatures to
identify pig feed efficiency traits.

Methods
Animals and sample collection
A total of 225 female DLY pigs in this study were pro-
vided by Guangdong Wen’s Foodstuffs Group Co., Ltd.
(Yunfu, China). The experimental animals were ran-
domly divided into 30 pens, and each pen had 6 to 8
pigs. All pigs were arranged in a controlled environment
with free access to water and food. The pig farm has
strict epidemic prevention measures, the living condi-
tions of the pigs such as humidity and temperature are
controlled by sophisticated equipment, and veterinarians
also regularly check the health status of the pigs to en-
sure that the pigs we randomly selected in the future are
healthy throughout the entire cycle. Phenotypic data
such as feed intake and weight per meal were recorded
by the Osborne Feed Intake Recording Equipment
(FIRE) Pig Performance Testing System (Osborne, KS,
United States). The entire experimental process lasted
approximately 12 weeks from an initial weight of ap-
proximately 30 kg to 100 kg. The calculation methods
for FCR and RFI are based on previously described stud-
ies [49]. In this study, FE was defined as the weight gain
from 30 kg to 100 kg of body weight divided by the total
feed intake, which is the inverse of the commonly used

feed conversion ratio (FCR). It means low FCR and RFI
ratios correspond to high FE. After ranking the FCR
values of 225 pigs, the top 25 highest FCR and 25 lowest
FCR were selected as the Low-FE and High-FE groups,
respectively. Fecal samples of 50 female piglet were col-
lected after rectal stimulation. From each pig 2–3 tubes
(2-ml sterile tubes) of fecal samples were collected, and
the tubes were immediately transferred to liquid nitro-
gen for temporary storage. Then, to minimize the effects
of microbial fermentation, the samples were stored at −
80 °C until analysis. In the entire monitored experiment,
except for the sampling required by the research, no be-
haviors that caused animal stress reactions were carried
out. The experimental protocol used in this study is in
accordance with the Animal Protection and Use Com-
mittee of South China Agricultural University (SCAU,
Guangzhou, China) (Approval number SCAU#0017).

Fecal sample pretreatment
Fifty milligrams of fecal sample were accurately weighed,
and 400 μl of extraction solution (methanol: water = 4:1)
was added to the samples. Then, the high-throughput
tissue grinder was used to crush at low temperature (60
Hz, − 20 °C). After vortex mixing and ultrasound at 40
kHz for 30 min at 5 °C, the extracted samples were
placed at − 20 °C for 30 min. The solution was then cen-
trifuged at 13,000 g for 15 min (4 °C), and the super-
natant was extracted and injected into the LC-MS
system for analysis.

LC-MS analysis and quality control
The instrument platform for LC-MS analysis in this
study was the AB SCIEX UPLC-TripleTOF system. The
chromatographic conditions were as follows: the column
was a BEH C18 column (100 mm × 2.1 mm i.d., 1.7 μm;
Waters, Milford, USA); mobile phase A was water (con-
taining 0.1% formic acid), and mobile phase B was aceto-
nitrile/isopropanol (1/1) (containing 0.1% formic acid).
The solvent gradient changed according to the following
conditions: from 0 to 3 min, 95% (A): 5% (B) to 80% (A):
20% (B); from 3 to 9 min, 80% (A): 20% (B) to 5% (A):
95% (B); from 9 to 13min, 5% (A): 95% (B) to 5% (A):
95% (B); from 13 to 13.1 min, 5% (A): 95% (B) to 95%
(A): 5% (B), from 13.1 to 16min, 95% (A): 5% (B) to 95%
(A): 5% (B) for equilibrating the systems. The sample in-
jection volume was 20 uL and the flow rate was set to
0.4 mL/min. The column temperature was maintained at
40oC. During the period of analysis, all these samples
were stored at 4oC. The flow rate was 0.40 mL/min, the
injection volume was 20 μL, and the column
temperature was 40 °C. In addition, the sample mass
spectrometer signals were collected using positive and
negative ion scanning modes. The mass spectrometry
conditions were as follows: electrospray capillary voltage,
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injection voltage and collision voltage: 1.0 kV, 40 V and
6 eV; ion source temperature and desolvation
temperature: 120 °C and 500 °C; carrier gas flow rate:
900 L/h; mass spectrometry scan range: 50–1000 m/z;
resolution: 30,000.
To evaluate the stability of the analysis system and

find the variables with large variations in the analysis
system during analysis, all test samples were mixed as
quality control (QC) samples. In the process of instru-
ment analysis, a QC sample was inserted every 8–10
samples.

Data analysis
Before conducting statistical analysis, the raw data were
imported into the metabolomics software ProgenesisQI
(Waters Corporation, Milford, USA) to generate the
matrix of retention time, mass-to-charge ratio, and peak
intensity for baseline filtering, peak identification, inte-
gration, retention time correction, and peak alignment.
Furthermore, to obtain the final data matrix for subse-
quent analysis, the preprocessing process was as follows:
(i) only variables with nonzero values above 80% in all
samples were retained; (ii) missing values were filled
using the k-nearest neighbors (KNN) approach in the R
DMwR package; (iii) standardized values were obtained
via the Z-score method, and the variables with relative
standard deviation (RSD) ≥ 30% of the QC samples were
deleted.
The p values for statistical differences in these pheno-

types were based on ANOVA, Wilcoxon rank-sum test
or unpaired Student t-tests, depending on the distribu-
tion of the data. If the data were normally distributed
and homogenous, ANOVA was used to evaluate whether
these traits were statistically significant, if the data were
normally distributed but not homogeneous, unpaired
Student t-tests were used, while a Wilcoxon rank-sum
test was used otherwise. Principal component analysis
(PCA) and (Orthogonal) partial least squares discrimin-
ation analysis (OPLS-DA) models were built using the
ropls package in R [50]. PCA was used to observe the
overall distribution between samples and the dispersion
degree between groups. OPLS-DA was used to distin-
guish the different metabolites between groups. The
goodness of fit (R2) and goodness of prediction (Q2) in
cross-validation were used to evaluate the performance
of the OPLS-DA model, and 500 permutation tests were
performed.

Weighted gene correlation network analysis
Network and clustering analyses were performed using
the R package Weighted Gene Coexpression Network
Analysis (WGCNA) [51]. The Pearson correlation coeffi-
cient was calculated to obtain a coexpression similarity
measure and used to subsequently construct an

adjacency matrix using soft threshold combined with
topological overlap matrix (TOM). Then, hierarchical
clustering was performed based on the TOM. Briefly,
the soft thresholds of the positive and negative ion
modes were set to 3 and 8, respectively, to achieve the
approximate scale-free topology of the signed network
(R2 > 0.9) (Fig. S3). In the dynamic tree cutting algo-
rithm, deepSplit was set to 2 and minModuleSize was
set to 50. The first principal component of the metabol-
ite module was used as the feature vector of the module
(including most of the variation information of all me-
tabolites in the module), used to calculate the correl-
ation coefficient between the metabolite module and
feed efficiency, and then the most relevant module for
subsequent analysis was selected. Subsequently, the gene
significance (GS) and module membership (MM) of the
most relevant module were calculated. Among these, GS
can represent the correlation between metabolic charac-
teristics and phenotype, and MM can represent the cor-
relation between metabolic characteristics and module
feature vectors. GS > 0.2 and MM > 0.8 were set as the
threshold to screen the hub genes. Since WGCNA was
first used for transcriptome data, we followed the term
hub gene to represent the important metabolites identi-
fied. Subsequently, hub genes were identified by using
the online Human Metabolome Database (HMDB) [52]
and the METLIN public database [53]. The p-values of
the hub genes were computed using the Wilcoxon test.
The pathways in which hub genes participated were
identified in the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) database [54].

Lasso-penalized linear regression
We performed the Lasso regression in R using the
glmnet [55] and caret packages. The sample data were
randomly divided into a training set and a test set at a 1:
1 ratio. Ten cross-validations were performed to calcu-
late the lambda value (lambda = 0.08678594). Receiver
operating characteristic (ROC) curves were generated
using the pROC curve, predictions were made on the
training set and the test set, and the importance of the
variables was evaluated by the varimp function of the
caret package.
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