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Abstract
Background African swine fever (ASF), caused by African swine fever virus (ASFV), is a fatal disease affecting wild and 
domestic pigs. Since China reported the first ASF outbreak in August 2018, ASFV has swept over the neighbouring 
Asian countries. However, studies involving experimental pig-to-pig ASFV transmission in Vietnam are lacking. The 
main objective of this experimental study was to demonstrate the pathobiological characteristics of ASFV contact-
exposed pigs and estimate their basic reproduction number (R0) in Vietnam. Fifteen pigs were randomly divided 
into two groups: experimental (n = 10) and negative control (n = 5) groups. One pig in the experimental group was 
intramuscularly inoculated with ASFV strain from Vietnam in 2020 and housed with the uninoculated pigs during the 
study period (28 days).

Results The inoculated pig died 6 days post-inoculation, and the final survival rate was 90.0%. We started observing 
viremia and excretion of ASFV 10 days post-exposure in contact-exposed pigs. Unlike the surviving and negative 
control pigs, all necropsied pigs showed severe congestive splenomegaly and moderate-to-severe haemorrhagic 
lesions in the lymph nodes. The surviving pig presented with mild haemorrhagic lesions in the spleen and kidneys. 
We used Susceptible-Infectious-Removed models for estimating R0. The R0 values for exponential growth (EG) and 
maximum likelihood (ML) were calculated to be 2.916 and 4.015, respectively. In addition, the transmission rates (β) 
were estimated to be 0.729 (95% confidence interval [CI]: 0.379–1.765) for EG and 1.004 (95% CI: 0.283–2.450) for ML.

Conclusions This study revealed pathobiological and epidemiological information in about pig-to-pig ASFV 
transmission. Our findings suggested that culling infected herds within a brief period of time may mitigate the spread 
of ASF outbreaks.
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Background
African swine fever virus (ASFV) is a large double-
stranded DNA virus of the Asfarviridae family and Asfi-
virus genus and is a highly contagious pathogen in pigs 
[1]. African swine fever (ASF), one of the most important 
transboundary swine diseases, has a serious economic 
impact on the global pig industry and threatens food 
security. Mortality rates in domestic and most wild pigs 
infected with ASFV can reach up to 100% [2, 3].

ASF outbreaks have recently been reported in Asia, 
with the first case reported in August 2018 in China [4] 
and then spreading to other Asian countries [5, 6]. In 
Vietnam, the first case was reported in February 2019 in 
Hung Yen province, 50 km from Hanoi and 250 km from 
the Chinese border [6]. Since then, ASF outbreaks have 
been detected in all 63 provinces of Vietnam, and 20–25% 
(6–6.15  million) of the pig population has perished due 
to ASF and massive depopulation policies [7]. One of 
the main risk factors is poor biosecurity and use of food 
waste as pig feed in small-scale farms, which account for 
60–65% of pig production in Vietnam [8]. In the past 5 
years, several in vivo experiments have been performed 
to evaluate the pathogenicity of ASFV isolated from Asia 
[9–13]. Our previous study revealed that ASFV isolated 
from Vietnam induced peracute to acute forms of the 
disease, resulting in high mortality (100% death within 8 
days post-inoculation [dpi]) with a short incubation time 
(3.7 ± 0.5 dpi) [14].

The basic reproduction number (R0) is an important 
parameter for describing the transmissibility of infectious 
diseases in a population and is useful for better under-
standing the characteristics of pathogens [15]. R0 was 
defined as the expected number of secondary infections 
from an infectious individual in a completely susceptible 

population [16]. It is affected by various biological and 
environmental factors as well as social behaviours, which 
are estimated using various complex mathematical mod-
els [17]. If R0 is greater than 1, the pathogen will continue 
to propagate in the susceptible population. The disease 
will decline and eventually fade out if R0 is less than 1.

In Vietnam, very few studies have calculated R0 at the 
farm level [18, 19]. Additionally, to the best of our knowl-
edge, no studies have estimated R0 for ASF using experi-
mental pig-to-pig transmission in Vietnam. Therefore, 
the primary objective of this study was to investigate the 
clinical signs and pathological lesions in ASFV contact-
exposed pigs and to estimate R0 for the first time using an 
experimental study.

Results
Clinical assessment and pathological lesions
The survival rate (90%) and onset of death in the experi-
mental pigs are shown in Fig.  1. Experimental inocula-
tion of the pig (no. #1) with ASFV was performed, and 
the animal was euthanised at 6 dpi. The first death in the 
contact group occurred at 13 days post-exposure (dpe). 
Pig no. #10 survived for the entire experimental period 
(up to 28 dpe). Excluding the surviving pig (no. #10), the 
average death period in the contact group was 16.9 ± 3.1 
dpe. Clinical sign scores and rectal temperatures in the 
experimental group varied throughout the experimental 
period (Table 1). The average clinical sign scores between 
the contact and negative control groups were signifi-
cantly different (p < 0.001), and intergroup compari-
sons also showed a significant difference between group 
and over time (p < 0.001) (Fig.  2). All necropsied pigs, 
except the surviving and negative control pigs, showed 
severe congestive splenomegaly and moderate-to-severe 

Fig. 1 Survival rate of the experimental pigs. Survival rate in the pen with the experimental group [red line; African swine fever virus-infected pig (n = 1) 
and direct contact pigs (n = 9)] and negative control group (black line; n = 5)
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Table 1 Time-serial changes in rectal temperature and clinical sign scores in experimental pigs
Dpi Clinical sign scores (rectal temperature, °C) in pig no.*

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
0 0 (38.4) 0 (38.4) 0 (39.1) 0 (39.8) 0 (38.6) 1 (39.6) 1 (39.6) 1 (39.6) 0 (39.1) 1 (39.0)

1 3 (39.6) 2 (39.5) 0 (39.1) 0 (39.3) 0 (39.3) 3 (39.6) 0 (39.3) 0 (39.4) 0 (39.3) 3 (39.6)

2 2 (40.2) 2 (39.6) 1 (39.1) 0 (39.3) 2 (39.5) 3 (40.0) 2 (39.7) 0 (39.0) 0 (39.4) 3 (39.6)

3 2 (40.2) 2 (39.6) 2 (39.6) 2 (39.9) 0 (39.3) 0 (39.4) 2 (39.8) 2 (39.7) 0 (39.1) 2 (39.7)

4 5 (40.8) 2 (40.1) 2 (39.9) 3 (39.7) 2 (39.5) 2 (40.2) 2 (40.2) 2 (39.9) 2 (39.6) 2 (39.8)

5 12 (41.0) 2 (40.3) 3 (39.8) 2 (39.8) 2 (39.7) 2 (39.7) 2 (39.7) 2 (39.8) 0 (39.4) 2 (39.7)

6 E 2 (39.8) 0 (39.3) 2 (39.8) 2 (39.8) 2 (40.1) 2 (39.8) 0 (39.4) 2 (40.0) 2 (39.7)

7 2 (39.6) 0 (39.4) 0 (39.3) 0 (39.4) 0 (39.2) 1 (39.5) 2 (39.8) 0 (39.4) 2 (39.6)

8 0 (39.4) 1 (39.0) 0 (39.1) 1 (39.4) 2 (39.7) 1 (39.4) 2 (39.8) 2 (39.6) 2 (39.5)

9 0 (39.3) 2 (39.5) 2 (39.7) 3 (40.4) 2 (39.9) 3 (39.9) 2 (39.8) 2 (39.5) 2 (39.6)

10 0 (39.3) 0 (39.4) 2 (40.1) 7 (41.6) 2 (40.2) 0 (39.4) 2 (39.6) 0 (39.0) 4 (40.6)
11 2 (39.8) 0 (39.3) 6 (41.5) 7 (41.3) 8 (41.4) 3 (39.8) 7 (41.6) 2 (39.6) 4 (40.6)
12 6 (41.7) 2 (39.8) 6 (41.3) 15 (41.7) 10 (42.0) 2 (39.9) 10 (41.5) 1 (39.4) 5 (40.6)
13 7 (42.3) 3 (39.7) 8 (41.8) D 9 (42.2) 2 (40.0) D 2 (40.1) 5 (40.7)
14 6 (41.8) 2 (39.9) 12 (42.0) 14 (41.5) 2 (39.5) 2 (39.5) 4 (40.7)
15 8 (41.8) 2 (39.9) D D 2 (40.2) 2 (39.5) 4 (41.0)
16 6 (41.8) 2 (39.5) 5 (41.4) 2 (39.7) 4 (40.7)
17 10 (41.5) 5 (39.7) 5 (41.3) 2 (39.6) 6 (40.5)
18 E 4 (40.0) 7 (41.2) 2 (40.2) 3 (40.2)

19 6 (41.3) D 6 (41.7) 2 (40.5)

20 8 (41.4) 11 (41.9) 2 (40.1)

21 9 (41.8) E 2 (40.3)

22 D 2 (40.2)

23 2 (40.3)

24 1 (39.4)

25 1 (39.2)

26 2 (39.7)

27 1 (39.0)

28 1 (39.0)

29 E
*, Pig no. #1, inoculated with African swine fever virus; pig nos. #2–10, pigs with within-pen direct contact. Bold text indicates that the pig showed clinical signs of 
African swine fever virus infection (> 3 scores). Dpi, day post-inoculation; E, euthanasia; D, death

Fig. 2 Average clinical sign scores in the experimental pigs. Red circles and horizontal line, African swine fever virus-inoculated pig; blue squares and 
horizontal line, direct contact-exposed; black triangles and horizontal line, negative control pigs
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haemorrhagic lesions in the lymph nodes (Table 2). How-
ever, the surviving pig (no. #10) only presented with mild 
haemorrhagic lesions in the spleen and kidneys. Haema-
toxylin and eosin-stained spleens showed moderate-to-
severe lymphoid depletion (nos. #1 and #5) and follicular 
atrophy (nos. #3 and #7), whereas such histopathological 
lesions were not observed in the surviving pig (no. #10) 
and the negative control (no. #15) (See Supplementary 
Fig. 1, Additional File 1). In addition, severe and diffuse 
engorgement of the red pulp of the spleen was observed 
in two contact pigs (nos. #5 and #7), whereas a mild 
engorgement lesion was detected in the surviving pig (no. 
#10).

Onset of virus infection
Time-dependent serial changes in viral load in blood 
samples from each experimental pig are shown in Fig. 3a. 
ASFV DNA was detected in blood samples from pig no. 
#1 at 2 dpi (7.6 × 103 copies/µL), 4 dpi (9.9 × 105 copies/
µL), and 6 dpi (1.9 × 106 copies/µL). Five pigs (55.5% of 
direct contact pigs) started to develop viremia from 10 
dpe. The average onset time of viremia in the contact 
group was 12.7 ± 3.4 dpe. Notably, viremia was detected 
in the surviving pigs (no. #10) until the end of the experi-
ment (28 d). Viral load in oral swab samples from pig no. 
#1 was 2.7 × 101 copies/µL (Fig. 3b) and those from nasal 
and rectal swabs were 1.0 × 104 and 6.1 × 103 copies/µL, 
respectively (See Supplementary Fig.  2, Additional File 
1). The average onset time of virus excretion from oral 
swab samples in the contact group was 12.3 ± 1.7 dpe. The 
mean onset times of virus detection in nasal and rectal 
swab samples from the contact group were 11.7 ± 1.3 and 
13.9 ± 2.9 dpe, respectively. ASFV DNA was detected in 
oral samples from the surviving pig (no. #10) from days 
13 to 22. These results indicate that the virus contact-
exposed pigs were infected during 10–15 dpe (average 
11.7 ± 2.1 dpi).

Estimation of transmission parameters
For the first inoculated pig, the infectious period (T) was 
estimated to be 4 days as the virus was first isolated at 
2 dpi and death occurred at 6 dpi. The mean and stan-
dard deviation of the generation time (GT) were esti-
mated to be 1.039 and 0.845 days, respectively, using a 
log-normal distribution (Table 3). The R0 values for expo-
nential growth (EG) and maximum likelihood (ML) were 
2.916 (95% confidence interval [CI]: 1.516–7.059) and 
4.015 (95% CI: 1.131–9.801), respectively. In addition, the 
transmission rates (β) were estimated to be 0.729 (95% 
CI: 0.379–1.765) for EG and 1.004 (95% CI: 0.283–2.450) 
for ML.

Discussion
The main route of ASFV transmission is direct contact 
between infectious and susceptible pigs [20]. Therefore, 
it is necessary to establish the clinical characteristics and 
transmission rates of contact-exposed pigs for ASF pre-
vention and control. In particular, the Vietnamese gov-
ernment officially changed the ASF control policy with 
the option of partial culling on outbreak farms in July 
2020 [21]. Therefore, this study aimed to elucidate R0 of 
ASFV in an experimental environment (ASFV introduc-
tion in viral-free herds) with detailed clinical information 
on contact-exposed pigs.

This study showed that the onset of ASFV excretion in 
contact-exposed pigs was 10 dpe, which was later than 
that reported in previous studies in China (6 dpe) and 
Europe (7.6 ± 2.6 dpe) [12, 22]. Moreover, these stud-
ies reported that the ASFV DNA from contact-exposed 
pigs was detected before the death of inoculated pigs 
(7–9 and 9 dpi, respectively) [12, 22]. In this study, the 
first viral infection in contact-exposed pigs (10 dpe) was 
detected 4 days after the death of the ASFV-inoculated 
pig (6 dpi). The discrepancy in the time taken to detect 
infection in ASFV-inoculated pigs could be explained 

Table 2 Presence of major gross pathological lesions in experimental pigs
Major gross lesions Pig no.* (death period)

#1
(6 dpi)

#3
(22 dpi)

#5
(12 dpi)

#7
(19 dpi)

#10
(Survive)

#15
(NC)

Congestive splenomegaly +++ +++ +++ +++ + -

Haemorrhagic enlargement of submandibular LN +++ +++ ++ ++ - -

Haemorrhagic enlargement of mesenteric LN +++ +++ ++ +++ - -

Hyperaemia of tonsil + - - + - -

Hyperaemia of lung + +++ - +++ -

Petechiae or haemorrhages in the liver + + - ++ - -

Petechiae or haemorrhages in the kidney +++ +++ + ++ + -

Petechiae or haemorrhages in the intestine +++ ++ + - - -

Petechiae or haemorrhages in the heart - +++ ++ + - -

Abdomen exudative fluid + ++ + ++ - -

Skin erythema + - ++ - - -
*Pig no. #1, ASFV-inoculated pig; pig nos. #2, #3, #5, #7, and #10, within-pen direct contact pigs; pig no. #15, negative control pig. LN: lymph node, NC: negative 
control, -: no lesion, +: mild, ++: moderate, +++: severe
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by the differences in the number of inoculated pigs and 
overall sample size [12, 22]. The first clinical signs of 
ASFV infection in the contact group emerged at 10 dpe, 
suggesting that the time of the first death in ASF-infected 
pigs was 96  h, which is a reasonable time to prevent 
ASFV transmission within herds and in farms. Therefore, 
if partial culling could be performed within 96  h of the 
first ASFV diagnosis in farms, further spread of ASFV 
may be prevented. However, there remain many obstacles 
to establishing an effective partial culling policy. In par-
ticular, it is essential to consistently apply the methods 
for early detection of ASF in non-culling pig herds. Undi-
agnosed non-culling pigs or survivors in outbreak farms 
could serve as silent carriers of ASFV.

We previously reported that the detection of ASFV 
genomic DNA in nasal and oral swabs (3 dpi) was later 
than that in blood samples (1 dpi) of intramuscularly 
inoculated pigs [14]. However, viral DNA in this study 
was observed in oral samples from three contact-exposed 
pigs (nos. #3, #7, and #9) before the animals developed 
viremia. These differences in viral excretion patterns 
could be attributed to the fact that ASFV is known to first 
replicate in monocytes/macrophages in the lymph nodes 
close to the initial site of infection [23]. The most impor-
tant ASFV transmission routes are ingestion of virus-
contaminated feed, drinking contaminated water, and 
swallowing of virus particles from infected pigs [24]. As 
such, ASFV may replicate in the submandibular lymph 
nodes in contact-exposed pigs. Therefore, oral sampling 
or rope-based oral fluid collection [14] is a more reliable 
method for early detection in ASFV contact-exposed pigs 
than blood sampling.

Although the highly virulent ASFV responsible for the 
Asian ASF epidemic is known to cause 100% mortal-
ity in infected pigs, we found that 10% of pigs (one out 
of 10 pigs) in the experimental herd survived. Previous 
studies have highlighted the importance of the survivors 
and convalescent pigs, which might become carriers of 
ASFV [25, 26]; however, few studies have experimentally 

Table 3 Estimated parameters from the models
Parameters Description Exponential 

growth (EG) 
method

Maximum 
likelihood 
(ML) method

R0 Basic reproduc-
tion number

2.916 (95% CI: 
1.516–7.059)

4.015 (95% CI: 
1.131–9.801)

T Infectious period 4 4

γ Removed rate 0.25 0.25

β Transmission rate 0.729 (95% CI: 
0.379–1.765)

1.004 (95% CI: 
0.283–2.450)

CI, confidence interval

Fig. 3 Patterns of African swine fever virus (ASFV) detection in pigs (n = 10) with experimental pig-to-pig infection. One ASFV-inoculated pig (no. #1) and 
nine direct contact-exposed pigs within pen (no. #2–#10). (A) Viral copies/µL from individual blood sample from experimental pigs. (B) Viral copies/µL 
from individual oral swab sample from experimental pigs
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assessed the pathobiological characteristics of surviving 
pigs with Asian-epidemic ASFV infection. The surviving 
pig (no. #10) showed viremia from 10 dpe until the end of 
the experiment (28 dpe); however, ASFV genomic DNA 
was not detected in oronasal samples after 24 dpe. More-
over, ASFV antibody positivity was observed in the sur-
viving pig from 26 dpe until euthanasia (data not shown). 
Although a long-term experiment is needed to elucidate 
the role of ASFV survivors, the present findings suggest 
that pigs surviving infection with a highly virulent ASFV 
strain would not act as carriers after convalescence. Our 
finding was consistent with that of a previous study on 
moderately virulent ASFV in Europe, with long-term 
monitoring [27]. The gross lesions of contact pigs (except 
the surviving pig) showed severe congestive splenomeg-
aly, haemorrhagic enlargement of lymph nodes, petechial 
lesions in the kidneys, and the presence of abdominal 
exudative fluid, which are commonly observed in ASF-
infected pigs [9, 10, 12, 20]. However, the surviving pig 
(no. #10) was intact, except for mild haemorrhagic lesions 
in the spleen and kidneys. Histopathological lesions in 
the spleens of contact-exposed pigs showed moderate-
to-severe lymphoid depletion, atrophy of follicles, and 
engorgement; however, mild haemorrhagic lesions were 
observed in the survivor. Although a recent study inves-
tigated the pathological lesions of the survivors (qPCR-
negative in blood and oral samples) in farms with ASF 
outbreak [28], the present study is the first to evaluate the 
pathomorphological lesions in the surviving pig (ASFV 
presence in the blood, but not in oral samples) by expos-
ing the animals to the highly virulent genotype II ASFV.

We found that the estimated infectious period from the 
first case was approximately 4 days, which is consistent 
with the findings of previous studies (3–4 days) [22, 29, 
30]. However, one experimental study suggested that the 
minimum infectious period was 6–7 days, whereas the 
maximum was between 20 and 40 days [31]. In addition, 
the transmission rate parameters (β) using the EG and 
ML methods were estimated to be 0.729 (95% CI: 0.379–
1.765) and 1.004 (95% CI: 0.283–2.450), respectively. 
These values are slightly similar to those of an experi-
mental study (0.6, 95% 0.3–1.0 per day) conducted in the 
UK [30] and higher than those of a recent farm investiga-
tion study (less than 0.37) conducted in Vietnam [19].

Our estimated R0 values were slightly higher or similar 
to those reported in previous studies in domestic pigs in 
the UK (R0: 2.8, 95% CI 1.3–4.8) and Uganda (R0: 1.58–
3.24) [30, 32], while some studies reported higher values 
in China (R0: 4.83–11.90) [33] and in the Netherlands (R0: 
4.9–66.3) [31]. These direct comparisons of R0 among 
studies have certain limitations, as the study designs and 
environmental conditions are different and R0 can be 
affected by various environmental factors [17, 20, 34]. For 
instance, it can be largely dependent on the pig species, 

pig population, and virulence of the ASFV isolates or 
strains.

The susceptible-infection-related (SIR) model was used 
to calculate R0, β, and γ, which are useful for evaluat-
ing cost-effective control and prevention measures in 
the Vietnamese context. In Vietnam, large-scale farms 
(accounting for less than 10% of pig production) have a 
better biosecurity system, whereas small- and medium-
sized farms are the main source of ASFV infection 
because of poor biosecurity. Previous studies in Vietnam 
have suggested that ASF transmission can be reduced by 
applying strict movement controls and biosecurity [8, 
35]. It was assumed that indirect contact (e.g., use of food 
waste and movement) contributed to more than 70% of 
ASF transmission in small-scale farms in Vietnam [36]. 
Although the authorities have already prohibited the use 
of kitchen waste or swill for domestic pigs since the first 
ASF outbreak, it is still widely practiced by small-scale 
pig farmers. In addition, it is well known that wild boars 
and soft ticks could be the main sources of infection in 
several countries [37–39]. In Asia, wild boars with ASF 
have been reported in China, India, Malaysia, and South 
Korea [6, 33, 40]; however, no study has been conducted 
to evaluate the possible roles of wild boars in the spread 
of viruses to domestic pigs in Vietnam. Therefore, it is 
necessary to conduct epidemiological investigations into 
the transmission route of the ASF virus.

Two techniques (EG and ML) were used to estimate 
R0 in our experimental study. The ML method showed a 
higher R0, but it was not significantly different from the 
EG method. The recent study in Vietnam conducted by 
Mai et al. [19] calculated R0 as 1.66 and 1.40 depending 
on the farm scale, which were lesser than our estimations 
of R0. It has already been shown that R0 can be influenced 
by environmental factors and modelling approaches [17]. 
Moreover, the previous study used real field data (farm 
scale: 100–999), which were more likely to be affected 
by other environmental factors (e.g. farmers’ behaviour, 
awareness, and control policies). R0 is useful for evalu-
ating the effectiveness of disease control measures. For 
instance, if R0 is less than 1, an infectious disease fades 
out in a population. In addition, it can be used to esti-
mate herd immunity (formula: 1 - 1

R0), which is defined as 
the majority of a population developing immunity against 
an infectious disease, either through vaccination or due 
to a previous infection [41].

Conclusions
This is the first experimental study on the transmission 
of ASFV in a population with detailed pathobiological 
information and the first to estimate R0 in Vietnam. Our 
results indicate that the virus began to spread by contact-
exposed pigs 10 dpe after the death of the first inoculated 
pig (6 dpi) within the same pen. This result suggests that 
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culling infected herds (pens) on an identical farm within 
a short period of time could lessen the impact of the ASF 
outbreak. In addition, our transmission experiment dem-
onstrated the possibility of survival in contact-exposed 
pigs with intact-to-mild pathological lesions. Although 
the survivor did not exhibit clinical signs and excreted 
ASFV from oral, nasal, and faecal sources, further long-
term studies are needed to clarify the risk of retransmis-
sion by the surviving pigs. The R0 values of ASFV were 
estimated to be 2.916 (EG) and 4.015 (ML), indicating 
that the virus is contagious in a pig herd. Since a vaccine 
is not available, the early detection of ASFV-infected pigs 
is important, and enhanced biosecurity measures should 
be applied by small-scale farmers to minimise the risk of 
transmission to domestic pigs.

Methods
Animal experiments
The ASFV strain used in this study was obtained from 
pig’s blood collected during an ASF outbreak farm in 
2020 in Thanh Hóa province, Vietnam (GenBank acces-
sion no. OP615344). The virus was cultured and quan-
tified as previously described [14]. Fifteen healthy, 
6-week-old pigs (Yorkshire × Landrace × Duroc) were 
obtained from the same herd on a commercial pig farm 
in Vietnam. All pigs were tested and confirmed to be 
seronegative for endemic pathogens in Vietnam, includ-
ing foot-and-mouth disease virus, porcine respiratory 
and reproductive syndrome virus, classical swine fever 
virus, porcine circovirus 2, ASFV, and Mycoplasma spp. 
The pigs were randomly divided into two groups: an 
experimental group (n = 10) and a negative control group 
(n = 5). To investigate the pathobiological characteristics 
in ASFV contact-exposed pigs and estimate R0, one pig 
(no. #1) in the experimental group was intramuscularly 
inoculated with 1 mL of the 103.5 50% hemadsorption 
dose (HAD50/mL) ASFV and housed with non-inocu-
lated pigs (nos. #2–#10; contact group). The pigs were 
euthanised according to endpoint criteria described pre-
viously [42].

Sampling and clinical assessment
The daily clinical signs and rectal temperatures of all 
pigs were recorded until the end of the experiment (28 
dpe). Clinical sign scores were estimated and calculated 
based on a previous study [14]. Every 2 days, blood and 
daily swab (oral, nasal, and rectal) samples were collected 
from individual pigs to detect ASFV DNA via quantita-
tive PCR (qPCR) using a VDx ASFV qPCR kit (Median 
Diagnostics, Chuncheon, South Korea). Necropsies were 
performed on five representative pigs (nos. #1, #3, #5, #7, 
and #10) in the experimental group, and one in the con-
trol group (no. #15). Gross and histopathological lesions 
(spleen) were analyzed as described in our previous study 

[9]. To evaluate the time series changes in clinical sign 
scores between the contact group (n = 9) and the negative 
control group (n = 5), a linear mixed effect model with 
repeated measures was used by SPSS version 26.0 (IBM, 
Armonk, NY, USA).

Estimation of the basic reproduction number (R0) and 
transmission rate (β)
R0 was defined as the average number of secondary cases 
caused by a single infection in a susceptible population. 
We used SIR models to estimate R0 from our transmis-
sion experiment. A susceptible animal (S) becomes infec-
tious (I) and is then removed (R) by depopulation or 
death at time t. The main assumption is that the entire 
population at the beginning is susceptible, which can be 
described by an equation based on time (t):

 
dS

dt
=

−βSI

N

 
dI

dt
=

βSI

N
− γI

 
dR

dt
= γI

In the equation model, β is the transmission rate, which 
is the probability of disease transmission between sus-
ceptible and infectious individuals, while γ is the removal 
rate. Based on the calculation of R0, the transmission rate 
(β), the daily rate that infectious cases cause new cases in 
a population, was calculated using the following formula 
[43]:

 
β =

R0

Infectiousperiod (T )

In our study, the infectious period was estimated to be 
4 days. The best-fitting GT distribution for a series of 
serial intervals was estimated using the est.GT func-
tion in the R0 package in R version 4.2.1. Subsequently, 
the mean and standard deviation of GT were calculated. 
Next, we constructed EG and ML models to estimate R0 
with 95% CI. R0 can be estimated at different times dur-
ing an epidemic and several methods have been proposed 
by researchers [44, 45]. In our study, we employed two 
methods: EG and ML. EG was summarised by Wallinga 
et al. (2007) [44] and they stated that the EG rate during 
the early phase of an outbreak can be linked to the ini-
tial reproduction ratio. ML estimation was proposed by 
White et al. (2009) [45] and they stated that the number 
of secondary cases caused by an index case exhibits a 
Poisson distribution with an expected value of R0.
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