
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Saco et al. Porcine Health Management            (2023) 9:42 
https://doi.org/10.1186/s40813-023-00337-7

Porcine Health Management

*Correspondence:
A. M. Gutiérrez
agmontes@um.es

Full list of author information is available at the end of the article

Abstract
Background The concentration of biomarkers in saliva could be influenced by several factors not related to the 
specific condition under analyses, which should be considered for proper clinical interpretation. In the present 
study, the circadian rhythm of C-reactive protein (CRP), haptoglobin (Hp), Pig-MAP, S100A12, Cu, Zn, Adenosine 
deaminase (ADA), total protein (TP), total antioxidant capacity (TAC), total oxidant status (TOS), oxidative stress index 
(OSI), cortisol and α-amylase in saliva of 20 female and 20 male pigs was investigated. Moreover, the influence of sex 
and production phase (post-weaning, fattening and finishing) on the concentrations of biomarkers in a total of 414 
healthy pigs was studied and the reference intervals for all salivary biomarkers were calculated accordingly.

Results All parameters except Pig-MAP, OSI and α-amylase varied significantly along the daytime, and most of them 
peak around early afternoon (13–15 h). The cosinor analysis described the temporal dynamics of circadian rhythms 
for all parameters. The range values showed differences between male and female pigs in 8 out of the 13 biomarkers, 
with higher concentrations in females in comparison to male pigs. The influence of the production phase on the 
salivary concentrations was observed for all the biomarkers. The highest concentrations were observed for Pig-MAP, 
S100A12 and α-amylase in post-weaning animals, for TP in growing pigs and for OSI in finishing animals. Most of the 
sex-influenced biomarkers showed the highest concentrations at growing stages with some exceptions such as ADA 
or Hp that showed the peak at finishing and post-weaning stages respectively.

Conclusions It is necessary to establish the optimal daytime for routine saliva sampling to avoid circadian variations 
and for that end, the time interval between 10:00 a.m. to 12:00 a.m. is highly recommended. The factors sex and 
production phase influence the concentration of biomarkers and should be considered for proper biomarker 
interpretation. The reference intervals presented here for each salivary biomarker will help to correctly interpret the 
results of these analytes and contribute to the use of saliva as a non-invasive sample for the diagnosis and monitoring 
of the health status of swine farms.
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Background
Over the years, saliva has become an important sample 
to assess the health status in pigs, due to its non-invasive 
character and easy collection that does not need experi-
enced staff. Components of saliva mirror in many cases 
those from plasma and they may provide a good indica-
tion of the health status of the individual [1, 2]. More-
over, saliva shows proteins originated from the different 
salivary sources that could also be of interest for health 
assessment and monitoring [1]. Several compounds 
related to stress, oxidation, inflammation, immune acti-
vation and other causes have already been assayed in pig 
saliva. One of the first analytes to be measured was the 
stress hormone cortisol since the collection of saliva may 
be performed without altering the animal, being a more 
adequate indicator of stress compared to the plasma hor-
mone [3]. Furthermore, it is known that only free cor-
tisol is found in saliva and that there is an equilibrium 
between the concentration of cortisol in saliva and free 
cortisol in plasma, although concentration in saliva is 
much lower than in plasma (5–10% of the free plasma 
cortisol concentration) [4]. Besides cortisol, many other 
analytes related to stress and pathology have been deter-
mined in pig saliva including acute phase proteins (APPs) 
[5–7], α-amylase [8, 9], carbonic anhydrase VI [10], inter-
leukin (IL)-18 [11], immunoglobulins (Ig) A, G and M 
[12, 13], adenosine deaminase (ADA) [14], chromogranin 
A [15], markers of the oxidative status [16] and trace ele-
ments [17].

Variations in the pig saliva concentration of one or 
more of these parameters are indicative of stress [2, 11, 
12, 18–22] and several pathologies [2, 6, 14, 16, 23, 24], 
increasing the interest on these biomarkers and this type 
of sample for the diagnosis and monitoring of the health 
status of swine farms.

On this regard, it is of the uttermost importance to 
analyze in detail all the potential sources of results varia-
tion, due to the conditions of the individual and/or dif-
ferences in the preanalytical phase of the procedure. It 
has to be considered that the saliva flux is variable, in 
contrast to the plasma volume, and it may be affected by 
the circadian cycle. Likewise, it is essential to establish 
reference intervals (RI) not only for each animal species, 
but also taking into account variables like age and man-
agement conditions. In fact, the effect of age, breed and 
productive stage has been already described by our group 
for salivary ADA, total antioxidant capacity (TAC) and 
the APPs haptoglobin (Hp) and C-reactive protein (CRP) 
[16], as well as the influence of the circadian rhythm on 
salivary cortisol [25, 26] and Hp and CRP [27].

Thus, the objective of the present study is to define the 
optimal daytime for routine saliva sampling and to estab-
lish actual reference range values for salivary biomarkers 
of health and welfare status in commercial pigs, specifi-
cally for CRP, Hp, Pig-MAP, S100A12, Cu, Zn, ADA, total 
protein (TP), TAC, total oxidant status (TOS), oxidative 
stress index (OSI), cortisol and α-amylase.

Results
Circadian rhythm trial
Statistically significant differences in the concentrations 
of salivary biomarkers during the daytime were observed 
for all parameters except Pig-MAP, OSI and α-amylase 
(Fig. 1). The highest values of biomarkers were reported 
in the saliva samples collected at 15:00  p.m. except for 
trace elements in which the highest values were reported 
at 11:00  a.m. No differences were observed in the day-
time variations of salivary parameters between male and 
female (p value > 0.05 for interaction between sex and 
time). The power of the differences found in the concen-
tration of salivary parameters between timepoints were 
higher to 90% for all analyses (Table 1).

The cosinor model showed the circadian curves for all 
parameters (Fig. 2). Overall, the concentration of salivary 
biomarkers peaks between 13:00–15:00 p.m. for most of 
the parameters. For OSI, the highest concentrations were 
obtained at midnight while α-amylase showed differ-
ent peaks for male (17:00 p.m.) and females (3:00 a.m.). 
Statistically significant differences between the mean 
midline-estimating statistics of rhythm (MESOR), 
or acrophase by sex were observed for ADA and Hp 
(MESOR) and for OSI (acrophase) (Table 2).

Reference interval trial
The concentrations of 5 biomarkers (Pig-MAP, S100A12, 
α-amylase, TP and OSI) were significantly different in 
pigs at different production stages but similar in male and 
female pigs, while the other 8 biomarkers showed statis-
tically significant differences in both factors (production 
stage and sex).

Three RIs were established for those biomarkers that 
showed an influence of production phase in the salivary 
levels (Table 3), specifically RI for post-weaning, growing, 
and finishing pigs. The highest levels of salivary biomark-
ers were observed in post-weaning animals for Pig-MAP, 
S100A12 and α-amylase, in growing pigs for TP and in 
finishing animals for OSI (Fig. 3).

For the biomarkers that showed an influence of sex 
and production stage in their salivary concentrations, 
six RIs were defined (Table  4). Overall, for all salivary 
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Fig. 1 Concentration of salivary analytes studied at different timepoints in healthy pigs. Pig-MAP (ng/mL) (A), CRP (ng/mL) (B), Hp (µg/mL) (C), ADA (U/
mL) (D), TP (mg/mL) (E), S100A12 (µg/mL) (F), Cu (µg/mL) (G), Zn (µg/mL) (H), TAC (µM/L Trolox equivalents) (I), TOS (µM/L peroxidase equivalents) (J), 
OSI (TOS/TAC ratio) (K), cortisol (µg/dL) (L) and salivary α-amylase (U/L) (M) concentrations at different timepoints (7:00 a.m., 11:00 a.m., 15:00 p.m. and 
19 p.m.). Graph showing the distribution of the population, the median (central horizontal line), 25th and 75th percentiles (non-central horizontal lines 
within the plot), maximum and minimum (edges of the figure). Statistical differences are indicated by *, **, ***, and **** for p < 0.05, p < 0.01, p < 0.001, 
and p < 0.0001, respectively
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biomarkers higher concentrations were recorded in 
female pigs in comparison to male counterparts. More-
over, the concentration of most biomarkers was higher at 
growing stages in males and females, except for ADA that 
showed the highest values at finishing and Hp and CRP 
that showed highest values at growing in males while the 
highest values were recorded at post-weaning state in 
females (Fig. 4).

Discussion
To use saliva as a routine sample type to assess pig health 
it is mandatory to acknowledge and characterize the 
potential sources of variation that may affect the analyti-
cal results, like it is well accepted for plasma parameters 
[28]. Furthermore, it is necessary to extend the experi-
mental studies on the calculation of RIs to provide a 
robust set of data to be used by the clinician.

Amongst the sources of variation, the influence of 
the circadian rhythm is important, as demonstrated by 
the well-known example of salivary cortisol [25, 26]. To 
describe the circadian rhythms of the different tested 
parameters, we have used the cosinor method described 
previously by Ekkel et al. to assess the circadian rhythm 
of salivary cortisol in pigs [18, 25]. In this method, point 
and 95% confidence interval estimates of the following 
rhythm characteristics are obtained: the MESOR (the 
rhythm-adjusted mean), the circadian amplitudes (mea-
sures of the extent of the predictable change within one 
cycle), and the circadian acrophases (measures of the 
timing of overall high values recurring in each cycle). 
Using this chronobiological approach, not only the aver-
age cortisol level is found but the amplitude of the circa-
dian rhythm is also analysed [25, 29, 30]. In the present 

study, the salivary cortisol rhythmicity is similar to other 
reports, peaking around noon or early afternoon [31–33]. 
Pigs in the present study were 120 days old and were 
sampled in spring. Although the circadian rhythms may 
be influenced due to environmental conditions [31], gen-
der or age [32] being less marked in very young animals, 
it has been described that around 20 weeks of age they 
reach an adult and stable profile [32]. The similarities 
between the fitted curve of our 12-hour study, 4-hourly 
values, and the one reported before for 24-hours cover-
ing [32], showed the usefulness of cosinor model for 
rhythmicity parameters comparison when sampling fre-
quency are restricted to few times along the scale of a 
given rhythm as reported before [29].

Besides cortisol, the influence of the circadian rhythm 
on other salivary parameters has been studied by us 
in the present work. Thus, the influence on CRP was 
found to be significant with the lowest concentrations 
at 19:00  p.m., and a fitted cosinor curve similar to the 
one observed for cortisol in this study and in previous 
reports [34] with peak concentrations in the late morn-
ing. Hp is higher in the afternoon than in the morn-
ing, with no additional variations between males and 
females but with higher MESOR values in females than 
in males. This difference in the MESOR between males 
and females was also observed for ADA concentrations 
and could be explained by the sex influence in the lev-
els of salivary biomarkers as reported before [33, 35]. 
Moreover, our peak around 15:00 p.m. in ADA levels also 
agree with the results reported for the peaks observed 
in ADA isoforms [33]. Although Pig-MAP showed no 
variations in the mean concentrations during the day-
time, the cosinor analysis revealed a circadian curve with 

Table 1 Achieved power for the analysis of variations in the concentration of salivary biomarkers during the daytime and the effect 
size of the differences observed between timepoints
Salivary biomarkers1 Difference 

between 
timepoints2

P value Power Effect size3

t1-t2 t1-t3 t1-t4 t2-t3 t2-t4 t3-t4

Pig-MAP No 0.265 90.28
CRP Yes 0.011 90.59 0.516 0.555
Hp Yes 9.69e-05 90.41 0.632 0.557 0.650 0.622
ADA Yes 3.37e-11 95.41 0.540 1.32 0.963 0.895
TP Yes 9.94e-07 91.77 0.986 0.633 0.657
S100A12 Yes 0.013 90.26 0.426 0.435 0.467
Cu Yes 0.029 90.94 0.643
Zn Yes 0.029 90.96 0.397
TAC Yes 0.002 90.65 0.501 0.818
TOS Yes 0.011 90.98 0.655
OSI No 0.200 90.46
Cortisol Yes 5.19e-05 90.35 0.399 0.544 0.815
α-amylase No 0.356 90.28
1Salivary biomarkers measured in a total of 20 female and 20 male healthy pigs
2Timepoints analysed: 7:00 a.m., 11:00 a.m., 15:00 p.m. and 19 p.m.
3Effect size: Cohen’s D
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higher concentrations in the early afternoon. Regarding 
the other parameters, the majority of them (TP, S100A12, 
Cu, Zn, TAC and TOS) are affected by the daytime except 
OSI and α-amylase which are not affected. However, the 
cosinor curves indicated that most of the parameters 
peak around early afternoon (13:00-15:00  p.m.) with 
the exception of Cu and Zn in males (peak between 
10:00 a.m. and 11:00 a.m.). The curves of females and 
males behave similarly for most of the parameters stud-
ied, although the amplitude, which measure the extent 
of rhythmic change, is clearly higher in females for Pig-
MAP, Cu, Zn, TAC and TOS, whereas the amplitude is 
clearly higher in males for S100A12. The curves for OSI 
and α-amylase are different in shape between females 
and males, showing different peaks for the concentra-
tions in females and males. Our results in male pigs 

agree with previous studies in which a peak of α-amylase 
was observed at around 16:00 p.m.  [33]. However, we 
observed differences in the TAC levels over the daytime 
peaking at 15:00 p.m., with a statistical power of 90.95%, 
which is contradictory to the results of the latest study. 
It has been described that circadian rhythms have a sig-
nificant impact on oxidative stress, but there is still an 
incomplete understanding of the molecular mechanisms 
linking circadian rhythms and oxidative stress [36] that 
should be further studied.

Nevertheless, the variations observed in all parameters 
fall within the normal range and they would not have any 
clinical significance as reported before for APPs [27].

It is difficult to compare these results to other animal 
species since there is very little or no information about 
the influence of the sampling time in salivary biomarker 

Fig. 2 Fitted cosine curves of the different salivary analytes studied in female (n = 20) and male (n = 20) pigs in the circadian study in which animals were 
sampled at 4 h interval in a 12 h period between 7:00 a.m. and 19:00 p.m. Pig-MAP (ng/mL) (A), CRP (ng/mL) (B), Hp (µg/mL) (C), ADA (U/mL) (D), TP (mg/
mL) (E), S100A12 (µg/mL) (F), Cu (µg/mL) (G), Zn (µg/mL) (H), TAC (µM/L Trolox equivalents) (I), TOS (µM/L peroxidase equivalents) (J), OSI (TOS/TAC ratio) 
(K), cortisol (µg/dL) (L) and salivary α-amylase (U/L) (M)
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concentrations. In humans, the influence of daytime was 
analysed for salivary α-amylase which peaks in the after-
noon (similar to our results in male pigs) [37], and for 
salivary antioxidant mechanisms which show several reg-
ular peaks along the daytime [38]. Our results show that 
TAC and TOS peak in early afternoon, but it is difficult to 
compare the results since the analytical techniques were 
different.

In general, it is clear that daytime may affect the con-
centration of many components in saliva [34], as studies 

performed in humans have already shown for melatonin 
[39], androgen derivatives [40], some steroid hormones 
and IgA [41], peptide hormones such as oxytocin and 
arginine-vasopressin [42], serotonin [43] and minerals 
such as Ca, P, Na and K [44]. None of these compounds 
were assayed in the present work.

In other animal species, some research has been car-
ried out in goats but referred only to electrolytes and 
urea and found diurnal acrophases for most of the tested 
parameters [45].

Table 2 Extracted parameters from the cosinor method analysis in female (n = 20) and male (n = 20) pigs
Salivary parameter MESOR Amplitude Acrophase

Mean CI
(2.5–97.5%)

Mean CI
(2.5–97.5%)

Mean CI
(2.5–97.5%)

Pig-MAP
Female 22.11 15.27–29.16 1.32 -6.46–4.59 -3.84 -7.44 - -1.15
Male 18.48 12.01–25.31 0.42 -8.66–2.61 -4.64 -6.16 - -2.90
CRP
Female 7.12 6.40–7.85 1.29 0.27–2.24 -3.02 -3.64 - -2.49
Male 6.26 5.56–7.01 1.08 0.11–2.06 -3.22 -4.16 - -2.34
Hp
Female 0.64* 0.50–0.79 0.03 -0.16–0.11 -4.84 -5.59 - -4.06
Male 0.34 0.19–0.49 0.07 -0.13–0.19 -4.35 -5.35 - -3.21
ADA
Female 4.66* 4.00–5.25 1.90 0.74–3.02 -3.92 -4.23 - -3.60
Male 3.03 2.40–3.69 1.50 0.42–2.55 -3.82 -4.20 - -3.42
TP
Female 1.27 1.09–1.45 0.24 -0.02–0.49 -4.08 -4.57 - -3.52
Male 1.08 0.90–1.26 0.17 -0.05–0.37 -4.18 -4.77 - -3.50
S100A12
Female 15.04 10.67–19.26 0.84 -6.00–3.28 -4.57 -5.75 - -3.35
Male 8.80 4.16–13.36 4.07 -2.54–9.58 -3.98 -5.11 - -2.78
Cu
Female 1.24 0.93–1.56 0.74 0.23–1.23 -3.51 -3.91 - -3.05
Male 0.89 0.58–1.20 0.23 -0.18–0.56 -3.00 -5.54 - -0.97
Zn
Female 2.07 1.80–2.32 0.48 -0.01–0.94 -3.62 -4.44 - -2.79
Male 1.87 1.61–2.12 0.12 -0.26–0.34 -2.52 -5.18 - -0.07
TAC
Female 15.98 12.07–19.63 6.98 2.55–11.30 -3.77 -4.11 - -3.39
Male 11.39 7.45–15.03 2.86 -1.27–6.53 -3.83 -5.17 - -2.36
TOS
Female 13.84 10.49–17.02 5.34 0.99–9.79 -3.92 -4.38 - -3.37
Male 11.45 8.42–14.46 1.14 -2.65–3.27 -4.25 -6.12 - -2.36
OSI
Female 1.10 0.80–1.44 0.35 -0.18–0.83 -6.25* -14.09 - -4.24
Male 1.42 1.10–1.74 0.59 0.01–1.17 -0.60 -2.10–1.28
Cortisol
Female 0.07 0.06–0.08 0.01 -0.00–0.03 -3.51 -4.60 - -2.35
Male 0.05 0.05–0.06 0.01 -0.00–0.03 -3.06 -4.30 - -2.02
α-amylase
Female 370.06 280.09–458.33 16.03 -114.37–58.01 -0.86 -3.10–4.35
Male 419.35 327.95–512.80 30.58 -100.36–97.99 -4.34 -6.12 - -2.45
*Statistically significant differences between female and male parameters (p < 0.05)
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We recommend establishing a time interval for routine 
saliva sampling to avoid misinterpretations due to circa-
dian variations. The optimal time interval should be com-
patible with farm and laboratory timetable to guarantee 
optimal biomarker analysis and/or sample storage, so the 
time interval between 10:00 a.m. and 12:00 a.m. is highly 
recommended.

Each of the salivary parameters studied has its own 
clinical significance and the information from one could 
not be replaced by other, but compatible. Those biomark-
ers without circadian influence in its levels, specifically 
Pig-MAP, α-amylase and OSI, would be preferable than 
others, however, for biomarker’s recommendation other 
factor should also be considered such as the specific con-
ditions to be evaluated, since not all the conditions alter 
the level of biomarkers in a similar way [19, 63].

On the other hand, RIs must be set for each animal 
species, and the knowledge of the influence of age and 
management conditions has been recognized as an 
essential condition to the correct use of these RI [28, 46]. 
Several reports have analysed the effects of age, breed or 
management conditions on plasma/serum parameters 
including APPs and metabolic compounds [47–53]  and 
found relevant differences in RI values depending on 

the conditions. Thus, the plasma antioxidant potential, 
hydroperoxides, the oxidative stress index (OSI) and vita-
min A and E differed in the young piglets depending on 
the weaning status [47]. Sex and age have an influence 
of serum acute phase proteins [48, 50–54], and plasma 
cytokines [51, 52]. Many of the most important differ-
ences occurs in young ages and around weaning, but they 
occur also in adult ages and depending on the conditions 
of the farm [53].

Despite the amount of information on serum or plasma 
analytes, scarce information is available on saliva. Our 
group has previously described the influence of sex, breed 
(Iberian or Large White x Duroc) and the production 
phase (post-weaning, nursery, fattening, and finishing) 
on ADA, CRP, Hp and TAC [16]. The results presented 
in this work extend this information to other salivary 
parameters. However, our study is limited to commercial 
entire male and female pigs and additional studies should 
be performed to extent the analysis to castrated or even 
immunocastrated pigs. Moreover, our results are limited 
to some commercial standardized genetics and further 
studies should be performed to cover other hybrids of 
other genetic lines.

Our results indicate that significant differences exist in 
several parameters depending on the production stage 
but were not affected by sex: Pig-MAP, S100A12 and 
α-amylase present higher values in post-weaning ani-
mals, whereas TP is higher in growing pigs and OSI in 
finishing pigs. Furthermore, on the other tested param-
eters, female animals showed higher RIs than males, and 
most of them higher values in the growing phase except 
for ADA, Hp and CRP. Our results are in concordance 
with previous ones in which higher levels of immune 
markers have been reported in saliva samples of female 
in comparison to age-matched male pigs [35]. Regarding 
CRP, Hp, ADA and TAC, our results were also similar to 
our previous study [16] taking into account the technical 
and biological differences between the animals included 
in each study.

The interest of the results described here on the influ-
ence of the sampling time and the calculation of reference 
intervals, using a high number of individuals, resides on 
the previously reported study by us showing that these 
parameters measured in saliva may provide a diagnostic 
tool more adequate than serum to evaluate the health sta-
tus of the herds [1]. In that work, the diagnostic power of 
saliva biomarkers to detect disease conditions in pigs was 
analysed in a multi-herd experimental approach, under 
field commercial conditions using two animal groups, 
healthy and diseased, and matching by breed, gender 
and age. The present study goes further on the full char-
acterization of these analytes to ensure that saliva could 
be considered as an alternative specimen to serum for 
detection of disease in pigs. Furthermore, these results 

Table 3 Reference range intervals in commercial pigs at 
different production stages for salivary biomarkers not sex-
influenced
Salivary biomarker1 Reference 

Interval
Lower and Upper 
Confidence Interval

N

Pig-MAP
Post-weaning 7.07–100.64 4.44–7.19; 98.69–207.72 156
Growing 4.37–29.30 3.43–5.24; 26.01–33.92 117
Finishing 3.65–36.79 2.72–3.74; 35.56–68.73 124
S100A12
Post-weaning 7.75–99.77 1.76–7.92; 100.24 – NA2 156
Growing 3.59–64.32 4.67–3.99; 64.58 – NA2 130
Finishing 6.61–60.68 3.24–8.38; 44.71–68.87 115
TP
Post-weaning 0.36–1.78 0.21–0.37; 1.78–2.30 157
Growing 0.76–3.20 0.43–0.78; 3.19–4.74 126
Finishing 0.31–2.08 0.14–0.37; 2.03–2.39 119
OSI
Post-weaning 0.32–1.37 0.27–0.33; 1.77 – NA2 160
Growing 0.49–1.61 0.42–0.49; 2.09 – NA2 130
Finishing 0.42–1.88 0.34–0.44; 2.24 – NA2 122
α-amylase
Post-weaning 36.19–

1576.61
19.0–36.03; 
1577.24–1685.32

160

Growing 57.90–
1174.28

28.82–58.95; 
1079.44–1579.21

131

Finishing 27.83–
1027.53

22.27–28.82; 
918.97–1632.92

124

1Pig-MAP (ng/mL); S100A12 (µg/mL); TP (mg/mL); OSI (Ratio TOS/TAC); α-amylase 
(U/L).
2NA = not available
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Fig. 3 Concentration of salivary analytes in pigs at different stages of the production system. Pig-MAP (ng/mL) (A), TP (mg/mL) (B), S100A12 (µg/mL) 
(C), OSI (TOS/TAC ratio) (D) and salivary α-amylase (U/L) (E). Graph showing the distribution of the population, the median (central horizontal line), 25th 
and 75th percentiles (non-central horizontal lines within the plot), maximum and minimum (edges of the figure). Statistical differences are indicated by 
**** for p < 0.0001
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will help to find the best combination of biomarkers to 
develop an optimal algorithm, for its possible implemen-
tation for disease monitoring and/or health status assess-
ment in the field, as suggested previously [17]. However, 
further studies should be performed to characterize the 
behaviour of each biomarker under different health con-
ditions to define optimal analytical models for detection 
of homeostasis dysregulation’s in field conditions.

Conclusions
The concentration of the studied salivary biomarkers of 
health and stress status showed variations during the 
daytime, so it is necessary to establish a time interval for 
routine saliva sampling for proper interpretation. The 
time interval between 10:00 a.m. and 12:00 a.m. is highly 
recommended since is compatible to both farm and lab-
oratory labour. Sex and production stage influence the 
concentration of salivary biomarkers in healthy animals 

and both factors should be considered for reference range 
values calculation. We have established actual reference 
intervals for male and female pigs at post-weaning, grow-
ing and finishing states for 13 salivary biomarkers that 
will contribute to the use of saliva as a non-invasive sam-
ple for the diagnosis and monitoring of the health and 
stress status of swine farms.

Materials and methods
Aim, design and setting of the study
The aim of the study was to analyse the possible influ-
ence of different factors on the concentration of salivary 
biomarkers under healthy conditions that should be con-
sidered for proper clinical interpretation. Specifically, the 
factors to be studied were the circadian rhythm varia-
tions, and the possible differences according to sex and 
production phase of the pigs. To overcome the objective 

Table 4 Reference range intervals in male and female pigs at different production stages for salivary biomarkers
Salivary biomarker1 Male pigs Female pigs

Reference interval Confidence interval N Reference interval Confidence interval N
CRP
Post-weaning 3.99–14.39 3.50–4.59; 10.79–17.13 79 5.53–29.60 5.13–6.13; 20.79–33.79 79
Growing 4.47–16.20 3.88–4.81; -13.62–18.24 64 4.62–15.00 3.85–5.10; 2.57–17.02 67
Finishing 4.69–14.56 4.46–4.85; 7.82–18.96 62 6.25–12.97 5.84–6.80; 12.24–14.95 53
Hp
Post-weaning 0.28–2.40 0.21–0.43; 1.72–2.70 79 0.31–4.35 0.19–0.40; 3.36–5.69 79
Growing 0.20–1.43 0.08–0.31; 1.09–1.57 59 0.20–2.44 0.12–0.30; 1.84–2.88 67
Finishing 0.07–2.14 0.00–0.08; 1.82–2.78 62 0.09–2.35 -0.01–0.11; 1.49–3.17 61
ADA
Post-weaning 1.23–5.39 1.14–1.35; 3.38–5.77 80 1.32–6.26 1.07–1.59; 5.10–6.81 80
Growing 1.96–7.92 1.30–2.45; 3.31–8.94 64 1.60–11.60 0.36–2.12; 9.94–13.46 67
Finishing 2.81–13.37 2.46–3.35; 0.10–16.04 62 2.20–20.53 1.33–2.58; 19.20–24.38 62
Cu
Post-weaning 0.46–3.52 0.33–0.61; 3.38–4.18 64 0.34–4.29 0.09–0.42; 3.92–5.02 71
Growing 0.69–2.94 0.63–0.82; 2.49–3.56 51 0.82–4.96 0.5–0.9; 4.22–5.59 54
Finishing 0.00–3.32 -0.19–0.01; 3.11–3.57 54 0.27–4.70 0.12–0.35; 4.28–5.75 53
Zn
Post-weaning 0.93–4.44 0.57–1 02; 3.84–5.20 76 0.77–5.89 0 56–0.85; 4.77–7.12 80
Growing 1.01–6.44 0.65–1.07; 5.85–8.15 64 1.35–9.08 1.01–1.86; 9.06–11.06 65
Finishing 0.60–4.96 0.36–0.71; 1.10–5.83 62 0.65–6.74 0.53–0.93; 4.54–7.23 62
TAC
Post-weaning 3.57–31.59 2.39–3.93; 19.11–35.14 80 3.29–40.75 1.17–3.75; 27.18–47.07 80
Growing 6.83–51.87 5.26–8.45; 6.49–58.33 64 13.50–102.94 11.90–18.00; 99.36–133.69 67
Finishing 4.02–47.36 1.67–5.48; 9.86–54.00 62 8.83–85.30 6.83–11.56; 67.10–108.17 62
TOS
Post-weaning 3.94–15.57 3.26–4.46; 13.63–17.84 77 2.79–21.17 1.61–3.62; 10 01–26.21 79
Growing 5.02–62.49 2.38–7.21; 51.37–73.97 64 8.39–70.01 7.02–10.69; 55.31–84.51 67
Finishing 3.88–61.68 2.45–5.72; 43.82–78.64 62 3.43–102.52 1.04–4.13; 72.30–139.37 62
Cortisol
Post-weaning 0.01–0.17 0.01–0.02; 0.16–0.20 75 0.01–0.15 0.00–0.02; 0.14–0.18 73
Growing 0.03–0.21 0.01–0.03; 0.17–0.27 62 0.07–0.37 0.06–0.11; 0.33–0.45 65
Finishing 0.01–0.28 -0.00–0.02; 0.23–0.31 58 0.01–0.37 -0.01–0.01; 0.26–0.45 61
1CRP (ng/mL); Hp (𝛍g/mL); ADA (U/mL); Cu (𝛍g/mL); Zn (𝛍g/mL); TAC (µM Trolox equivalents/L); TOS (µM Peroxidase equivalents/L); Cortisol (𝛍g/dL).
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Fig. 4 Concentration of salivary analytes in pigs of different sexes and stages of the production system. CRP (ng/mL) (A), Hp (µg/mL) (B), ADA (U/mL) 
(C), TAC (µM/L Trolox equivalents (D), TOS (µM/L peroxidase equivalents) (E), cortisol (µg/dL) (F), Cu (µg/mL) (G), and Zn (µg/mL) (H). Graph showing the 
distribution of the population, the median (central horizontal line), 25th and 75th percentiles (non-central horizontal lines within the plot), maximum 
and minimum (edges of the figure). Statistical differences are indicated by *, **, ***, and **** for p < 0.05, p < 0.01, p < 0.001, and p < 0.0001, respectively
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of the study, two separated trials were performed: circa-
dian rhythm trial and RI trial.

For the first trial, a group of 40 animals around 120 
days of life were sampled at different daytimes (07:00, 
11:00, 15:00 and 19:00 h) on May 25th, 2022. The room 
temperature oscillated a maximum of 2.4ºC between 
samplings (from a minimum medium temperature of 22 
ºC at early morning to a maximum medium temperature 
of 24.1 ºC in the afternoon). Four experimented veteri-
nary researchers performed the clinical examination, to 
discard any clinical sign of disease, and the sampling of 

animals at each timepoint (1 researcher/10 animals) to 
reduce the duration of the experimental procedure.

The RI trial was performed in a total of 6 days between 
June 1st and 28th, 2022. Three different production 
phases were included in the study: post-weaning (pigs 
with a median weight of 21.6  kg), fattening (pigs with 
a median weight of 63.4  kg) and finishing (pigs with a 
median weight of 98.7  kg). Three farms per production 
phase were included in the study, in which a minimum 
of 20 males and 20 females were sampled at the same 
time of the day (between 10 and 12  h), after discarding 
any clinical signs of disease during proper clinical exami-
nation. A minimum of 120 animals (60 males and 60 
females) were selected per production phase which gave 
a minimum total sample size of 360 pigs (Table 5).

Animals and housing conditions
For circadian rhythm trial, one commercial farm from 
the southeast of Spain was selected while for reference 
range interval trial, nine commercial farms from the 
Southeast of Spain were selected from the same commer-
cial company to obtain data over different environments.

The vaccination of animals was the same for all farms 
within each production phase. The vaccination program 
consisted of the administration of a first dose against 
porcine circovirus and mycoplasma before weaning at 
21 days of life, the vaccination against enzootic pneumo-
nia at 10 and 14 weeks of life and the vaccination against 
Aujezsky disease at 11 and 15 weeks of life.

All pigs were housed in pen groups with 0.65 m2/
pig following the official standards [54] with ad libitum 
access to balanced dry food and water.

The sample size used for the circadian rhythm trial was 
40 (20 males and 20 females) as reported before [27]. To 
ensure a proper statistical significance of the analysis, the 
optimal power for daytime variations was established as 
90%.

For the establishment of RIs, a minimal sample size of 
60 per condition was used following the general guide-
lines for the determination of reference intervals in vet-
erinary species [46].

Saliva sampling procedure
Saliva samples were collected individually, without ani-
mal restrain, by using 1 × 1 × 1  cm sponges clipped to a 
thin metal rod. Pigs were allowed to chew the sponge for 
1–2  min. Afterwards, sponges were included in specifi-
cally designed tubes for saliva collection (Salivette tubes, 
Sarstedt, Nümbrecht, Germany), individually labelled 
and stored in boxes with cold accumulators until trans-
ported to the laboratory within 4 h after collection. Saliva 
collection tubes were centrifuged at 3000  g for 10  min 
to obtain the clear whole saliva from the sponges and 

Table 5 Characteristics of the animals from the reference 
interval analysis
Origin N1 Age2 Breed Weight3

Post-weaning
Farm 1 Male 32 85 F1 Danbred x Duroc 

Danbred
22

Female 
31

85 F1 Danbred x Duroc 
Danbred

22

Farm 2 Male 23 63 F1 Danbred x Duroc 
Danbred

18

Female 
24

63 F1 Danbred x Duroc 
Danbred

18

Farm 3 Male 25 85 F1 Danbred x Duroc 
Danbred

25

Female 
25

85 F1 Danbred x Duroc 
Danbred

25

Growing
Farm 4 Male 23 121 F1 ADN x Duroc Danish 59

Female 
22

120 F1 ADN x Duroc Danish 55

Farm 5 Male 21 120 F1 Danbred x Duroc 
Danbred

54

Female 
23

120 F1 Danbred x Duroc 
Danbred

54

Farm 6 Male 20 138 F1 Danbred x Duroc 
Danbred

79

Female 
22

147 F1 Danbred x Duroc 
Danbred

72

Finishing
Farm 7 Male 21 170 F1 Danbred x Duroc 

Danbred
97

Female 
21

165 F1 Danbred x Duroc 
Danbred

89

Farm 8 Male 21 171 F1 Danbred x Duroc 
Danbred

103

Female 
21

165 F1 Danbred x Duroc 
Danbred

90

Farm 9 Male 20 194 F1 Danbred x Duroc 
Danbred

115

Female 
20

194 F1 Danbred x Duroc 
Danbred

115

1N = number of animals
2Age expressed as the mean value in days of life
3Weight expressed as the mean value in Kg



Page 12 of 15Saco et al. Porcine Health Management            (2023) 9:42 

remove food or cell debris. Saliva samples were stored at 
-80ºC until analysis within 1 week.

Acute phase proteins determination: CRP, Hp and Pig-MAP
The measurement of CRP and Hp was carried out using 
previously in-house developed time-resolved immuno-
fluorometric assays (TR-IFMA) which were validated 
for the optimal quantification of CRP [55] and Hp [56] in 
porcine saliva samples. The concentrations of Pig-MAP 
were quantified using an in-house TR-IFMA, recently 
optimized and validated for proper saliva quantifica-
tion from a previous ELISA [57]. In summary, the new 
developed assay showed good intra-assay and inter-assay 
precision with coefficient of variation (CV) lower than 
10.56% and 13.73% respectively, good accuracy investi-
gated by linearity under dilution with coefficient of cor-
relation of 0.99 and a limit of detection of 4.09 ng/mL. 
The fluorometric signals were quantified in a multilabel 
counter (Victor 1420, Perkin Elmer, Turku, Finland). For 
saliva Pig-MAP determinations, saliva samples were ana-
lysed undiluted, and the calibration curve used covered a 
range between 7.8 and 2000 ng/mL.

S100A12 quantifications
S100A12 levels were quantified by an in-house sandwich 
enzyme-linked immunosorbent assay (ELISA) recently 
developed and validated for porcine saliva determina-
tions [58]. The assay consisted in a sandwich ELISA 
with good analytical parameters. In summary, the assay 
showed a high precision, with coefficients of variations 
lower than 7% for intra and inter-assay precision, good 
accuracy with coefficient of correlation of 0.98, when lin-
earity under dilution was evaluated, and a limit of detec-
tion of 3.19 ng/mL. For saliva determinations, samples 
were diluted 1:1000 and the calibration curve used was 
constructed using porcine recombinant protein (1.95 to 
125 ng/mL) (GenScript Biotech, Leiden, Netherlands).

Measurement of Cu and Zn levels
For the measurements of Cu and Zn levels, samples were 
subjected to acid digestion as reported before [17] fol-
lowed by atomic absorption spectrometry (Varian model 
SpectrAA 55B spectrometer, Palo Alto, CA, USA). The 
contents of Cu and Zn in the saliva samples were calcu-
lated by the interpolation of the signal in a standard curve 
(from 1 to 4 µg/mL of certified standard solutions for Cu 
and Zn (Agilent Technologies Spain, Madrid, Spain)), 
with standard concentration on the x-axis and signal on 
the y-axis drawing the best-fit curve through the stan-
dard points and taking into account the dilution of the 
saliva according to the digestion protocol used (0.5mL of 
saliva in a final volume of 2.5 mL).

ADA activity determination
The procedure is an adaptation to microtitration plates of 
a commercial automatized assay (BioSystems S.A., Bar-
celona, Spain) based on Slaats et al. [59]. The assay was 
previously optimized and validated for porcine saliva 
samples with good precision, accuracy and limit of detec-
tion [14]. The levels of total ADA activity are calculated 
in U/mL according to manufacturer’s instructions taking 
into account the dilution factor.

Total protein content determination
The total protein content was determined according to 
Bradford protocol [60]. Saliva samples were diluted (1:40) 
for its proper quantification using an albumin calibration 
curve (from 5 to 100 ng/mL).

TAC, TOS and OSI determinations
TAC was measured through the ferric reducing antioxi-
dant power (FRAP) assay [61]. The assay was validated for 
porcine saliva samples with good analytical performance 
[16]. The levels of TAC are calculated using a standard 
curve of Trolox (a water-soluble analogue of vitamin E 
employed as a control antioxidant agent for assay calibra-
tion), ranging from 1.5 to 100 µM Trolox equivalents/L.

The procedure for Total Oxidant Status (TOS) mea-
surement is an in-house adaptation of a commercially 
available assay (Pierce Quantitative Peroxide Assay Kit, 
aqueous-compatible formulation) based on Nourooz-
Zadeh et al. [62]. The assay has been previously validated 
for porcine saliva determinations with high precision, 
accuracy and good limit of detection [63]. The levels of 
TOS are calculated using a standard curve of Hydrogen 
peroxide (0.97 to 31.25 µM Peroxidase equivalents/L).

The Oxidative Stress Index (OSI) was calculated as the 
ratio TOS/TAC according to previous studies [64].

Cortisol and salivary alpha-amylase measurements
The cortisol content was measured using an optimized 
commercial competitive ELISA (Extended range high 
sensitivity salivary cortisol Enzyme immunoassay kit, 
Salimetrics, USA). Cortisol concentration in µg/dL was 
calculated according to the manufacturer’s instruc-
tions by interpolation of the signal in a standard curve 
(0.012 µg/dL − 3 µg/dL) using porcine saliva without pre-
vious dilution.

Salivary alpha-amylase was quantified using an adap-
tation of the commercial kinetic enzyme assay (Salivary 
alpha-amylase kinetic enzyme assay kit, Salimetrics, 
USA). In the adaptation, 8 µL of saliva sample or control 
were incubated with 320 µL of amylase substrate during 
5 min at 37ºC. The increase in absorbance from minute 1 
to 5 was recorder for alpha-amylase activity calculation.



Page 13 of 15Saco et al. Porcine Health Management            (2023) 9:42 

Statistical analysis
Prior to statistical analysis, all groups of data were sub-
jected to Shapiro-Wilk normality test followed by 
Fligner-Killeen test of homogeneity of variances to check 
the normality and homoscedasticity of the data and 
select the appropriate statistical tool. Data from both 
the circadian rhythm and RI trials passed the normal-
ity and homoscedasticity criteria so mixed ANOVA and 
two-way ANOVA test were used (for detailed results see 
supplementary Tables 1 and 2).

To show if differences exist between the timepoints 
during the daytime, results from the circadian rhythm 
trial were analysed by mixed ANOVA in which Maulch-
ly’s test was used to check for sphericity using Green-
house-Geisser or Huynh-Feldt sphericity corrections. 
When statistically significant differences were detected 
in the mixed ANOVA, a post-hoc multiple comparisons 
test was performed with Tukey’s correction and the size 
effect was calculated as the coefficient Cohen’s d. The 
achieved power for the mixed ANOVA test in the sample 
size studied was calculated for each biomarker. After-
wards, time series were analysed by the mixed-effects 
cosinor model to obtain a 24  h fitted cosine curve for 
each parameter and to estimate the effects of biological 
sex on each parameter curve (waveform). The estimated 
mean and confidence intervals for the means were cal-
culated for the MESOR, amplitude and acrophase by sex 
and pairwise contrast by sex for each component were 
estimated [18, 25].

For the calculation of the RIs, histograms were pre-
pared to illustrate the distribution of data and highlight 
possible outliers. Horn’s algorithm was used for outlier 
detection and elimination. Two-way ANOVA test were 
used considering sex and production phase as factors. 
When differences in the biomarker’s concentration due 
to sex or production phase were observed, partitioning 
criteria were used for more refined RI calculation within 
subgroups. A minimum of 120 reference animals were 
defined as the limit for the determination of reference 
limits by nonparametric methods. Bootstrapping was 
used to determine 90% confidence intervals for groups 
of less than 120 animals, following general recommenda-
tions [46].

All statistics were performed using R software version 
4.0.3. The level of significance was set at p < 0.05.
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