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Abstract 

The transmission of viral aerosols poses a vulnerable aspect in the biosecurity measures aimed at preventing 
and controlling swine virus in pig production. Consequently, comprehending and mitigating the spread of aero-
sols holds paramount significance for the overall well-being of pig populations. This paper offers a comprehensive 
review of transmission characteristics, influential factors and preventive strategies of common swine viral aerosols. 
Firstly, certain viruses such as foot-and-mouth disease virus (FMDV), porcine reproductive and respiratory syndrome 
virus (PRRSV), influenza A viruses (IAV), porcine epidemic diarrhea virus (PEDV) and pseudorabies virus (PRV) have 
the potential to be transmitted over long distances (exceeding 150 m) through aerosols, thereby posing a substantial 
risk primarily to inter-farm transmission. Additionally, other viruses like classical swine fever virus (CSFV) and African 
swine fever virus (ASFV) can be transmitted over short distances (ranging from 0 to 150 m) through aerosols, posing 
a threat primarily to intra-farm transmission. Secondly, various significant factors, including aerosol particle sizes, viral 
strains, the host sensitivity to viruses, weather conditions, geographical conditions, as well as environmental condi-
tions, exert a considerable influence on the transmission of viral aerosols. Researches on these factors serve as a foun-
dation for the development of strategies to combat viral aerosol transmission in pig farms. Finally, we propose several 
preventive and control strategies that can be implemented in pig farms, primarily encompassing the implementation 
of early warning models, viral aerosol detection, and air pretreatment. This comprehensive review aims to provide 
a valuable reference for the formulation of efficient measures targeted at mitigating the transmission of viral aerosols 
among swine populations.
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Background
The significance of biosecurity in farms is increasingly 
acknowledged due to the significant challenges posed by 
the ASFV to the global pig industry, particularly in Asia, 
where conventional interventions such as vaccines or 
drugs have proven ineffective in addressing these issues 
[1, 2]. In the biosecurity system, aerosol transmission has 
always been a weak link in biosecurity prevention and 
control, thus understanding and preventing aerosols is 
extremely important for the health of pig populations. 
The investigation of aerosol transmission is a specialized 
and noteworthy area of study, particularly in relation to 
the examination of swine viral aerosols. In a previous 
review, STARK [3] presented a comprehensive over-
view of pathogen aerosols in pig farms, offering valuable 
and enduring perspectives that continue to be cited and 
employed by farmers, despite the passage of time. How-
ever, recent advancements in research techniques and the 
growing needs of farmers have led to the identification 
of additional aerosol-borne viruses and the revelation of 
more intricate transmission patterns.

Bioaerosols, characterized by the presence of small 
droplets or particles measuring less than 5 μm suspended 
in a gaseous medium, possess the capacity to transport 
pathogenic microorganisms and facilitate the transmis-
sion of diseases [4]. The present review is specifically 

dedicated to viral aerosols laden with swine viruses. Res-
piratory activity in swine populations serves as a notable 
origin of aerosols [5]. Pathogenic viruses can be actively 
or passively released into the air via aerosols, resulting in 
extensive dissemination of the virus [6–8]. The potential 
of viral aerosols to induce diseases is primarily contingent 
upon the infectivity of the pathogen and the requisite 
dosage for a susceptible host [9]. The dynamics and dis-
persion of viral aerosols are influenced by a multitude of 
factors, including aerosol diameter, initial velocity, tem-
perature, relative humidity, ultraviolet radiation, airflow, 
ventilation, and filtration [10–12]. The viability of viruses 
within aerosols is impacted by the initial metabolic state 
of the virus, genetic characteristics, and the surrounding 
environment.

This review comprehensively summarizes the latest 
characteristics of aerosol transmission for various  com-
mon swine viruses (Table  1), including FMDV, PRRSV, 
IAV, PEDV, PRV, CSFV, ASFV, porcine circovirus 
(PCV), swine vesicular disease virus (SVDV), Japanese 
encephalitis virus (JEV), and porcine respiratory coro-
navirus (PRCV). Notably, it encompasses a summary of 
several recently discovered viruses that exhibit the abil-
ity to be transmitted via aerosols, including SIV, JEV, 
PCV, and PEDV. Additionally, by drawing upon practical 
experiences and strategies employed in the prevention 

Table 1 Characteristics and influential factors of aerosol transmission for different swine viruses

Category Virus Diameter (nm) Distance of 
transmission

Viral loads in aerosols Experimental 
evidence

Field evidence Influential factors

Long-distance FMDV 26 300 km [18, 19] 105.8–106.4TCID50 [24] Yes [24] Yes [17, 19] Viral strain, host spe-
cies, weather condi-
tion, geographical con-
dition, environmental 
condition, contract 
structure

PRRSV 60 9.2 km [30] 6 ×  102–5.1 ×  104copies /
m3 [35]

Yes [28, 29] Yes [30] Viral strain, mixed path-
ogen, aerosol particle 
size, environmental 
condition

IAV 80–120 2.1 km [40] 104–107 copies/m3 [39] Yes [41] Yes [40] Viral strain, aerosol 
particle size, environ-
mental condition,

PEDV 95–190 16.1 km [51] 1.3 ×  106–3.5 ×  108copies/
m3 [35]

Yes [54] Yes [51] Viral strain, aerosol par-
ticle size, wind direc-
tion, age of susceptible 
animals

PRV 225 13.8 km [60] 105.3  TCID50 [59] Yes [59] Yes [60] Unknown

Short-distance CSFV 40–50 1 m [65] 101.2–103.8TCID50/m3 [70] Yes [65] Yes [64] Viral strain, viral dose, 
RH, wind speed

ASFV 200 10 m [78] 103.2  TCID50/m3 [81] Yes [76, 77] Yes [78] Unknown

Others PCV 17 Unknown 107 copies/m3 [84] Unknown Yes [84] Unknown

SVDV 24–26 Unknown 101.4–102.6  TCID50 [89] Unknown Yes [89] Unknown

JEV 50 Unknown Unknown Yes [97] Unknown Unknown

PRCV 100–160 Unknown 101.87PFU/m3 [104] Yes [105] Unknown Unknown
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and control of human aerosol-transmitted viruses, 
we propose innovative approaches that hold potential 
for application in the prevention and control of aero-
sol transmission within pig production. This review is 
expected to serve as a valuable reference for the formula-
tion of effective strategies to prevent the transmission of 
viral aerosols among pig populations.

Airborne swine viruses in pigs
In this section, we summarize the characteristics and 
influential factors of aerosol transmission of various 
prevalent swine viruses. The transmission distance of 
viral aerosols holds significant importance, as evidenced 
by a scholarly report suggesting that a spatial separation 
exceeding 150 m between structures can effectively miti-
gate the risks associated with airborne transmission [3]. 
Consequently, we classify these viruses into three dis-
tinct categories based on their respective aerosol trans-
mission distances (Table  1): long-distance transmission 
viruses (exceeding 150  m), short-distance transmission 
viruses (ranging from 0 to 150  m), and other viruses 
with unknown transmission distances. The long-distance 
transmission viruses primarily occur between farms, 
while the short-distance transmission viruses mainly 
occur within a farm.

Long‑distance airborne viruses
FMDV
FMDV, belonging to the Aphthovirus genus within the 
Picornaviridae family, is an enveloped, single-stranded 
positive-sense RNA virus with a diameter of approxi-
mately 26  nm. It primarily causes vesicular diseases 
affecting the oral mucosa, hoof parts, and udder skin in 
pigs, cattle, and sheep, which is also a zoonotic disease 
[13]. The airborne transmission of FMDV under filed 
conditions has been extensively investigated, with a par-
ticular focus on the creation of mathematical models 
that incorporate variables such as meteorological con-
ditions and wind patterns [14–16]. These models have 
greatly expanded our understanding of the characteris-
tics of FMDV airborne transmission. Hugh-Jones’ report 
indicates that aerosol transmission of FMDV on land 
can reach distances of 60–150  km with the assistance 
of favorable weather conditions, including wind and 
rain [17]. Moreover, the transportation of viruses over 
long distances through plumes is particularly probable 
across seaways due to the minimal surface turbulence 
and the ability to sustain airborne particle concentra-
tions for greater distances compared to land areas [18]. 
It is believed that the farthest distance of airborne dis-
semination over the sea is approximately 300  km, from 
pig farms experiencing FMDV outbreaks in Brittany 
(northern France) to cattle farms located on the Isle of 

Wight [14, 17, 19]. Consequently, the capacity for FMDV 
to transmit through the air is influenced by both weather 
conditions and geographical factors. Another important 
factor is that susceptibility to the virus varies among dif-
ferent species, with ruminants becoming infected with 
as little as 10 TCID50 dose, whereas pigs require a dose 
of 6 ×  103 TCID50 [20, 21]. And the shed virus in saliva 
and nasal swabs from FMDV-infected pigs is 100–1000 
times more infectious for sheep and cattle than the mini-
mum infectious dose, indicating the potential role of pigs 
as an important source for airborne transmission [22, 
23]. An integrated model developed by SéRENSEN et al. 
showed that when 1,000 pigs were infected and released 
the virus, the longest airborne distances for downwind 
cattle, sheep and pigs were 300  km, 90  km and 20  km, 
respectively, which also supports the above opinion [15]. 
Under experimental conditions, more details about aero-
sol propagation signatures of FMDV were discovered. In 
a study by Alexandersen et al., three strains of FMDV in 
aerosols showed that each pig could release  105.8–106.4 
TCID50 of the virus into the air within a 24-h period 
[24]. Eble et al. conducted a study and found that the esti-
mated between-pen transmission rate of FMDV was 0.59 
per day, while the within-pen transmission rate was 6.14. 
This suggests that the contact structure between pigs 
significantly influences the transmission rate of FMDV 
[25]. Furthermore, it has been observed that FMDV has a 
greater likelihood of survival in environments with tem-
peratures below 60 °C, relative humidity (RH) above 55%, 
and a neutral pH. This indicates that environmental fac-
tors may also have a significant impact on the airborne 
transmission of FMDV [26].

PRRSV
PRRSV, belonging to the Arterivirus genus within the 
Arteriviridae family, is an enveloped, single-stranded 
positive-sense RNA virus with a diameter of approxi-
mately 60  nm. It primarily causes reproductive disor-
ders in sows and respiratory difficulties in piglets [27]. 
Research has demonstrated that PRRSV can be transmit-
ted through aerosols with a range of 0.5–150  m under 
experimental conditions [28, 29], whereas the distance 
can extend up to 9.2 km or even further under field con-
ditions [30]. The primary factors effecting the airborne 
transmission capacity of PRRSV are viral strains and 
mixed pathogens. On the one hand, Torremorell et  al. 
found that the PRRSV strain VR-2332 could be trans-
mitted through the air, while highly pathogenic field 
strains (MN-1b) could not [31]. Research conducted 
by Cho et  al. also demonstrated that the pathogenic-
ity of PRRSV isolates significantly affects the frequency 
of aerosol shedding but does not significantly influence 
the concentration of the virus in aerosols [32, 33]. On 
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the other hand, Otake et al. demonstrated that airborne 
transmission only occurred under mixed conditions with 
PRRSV variants 1-8-4 and porcine pneumonia-associ-
ated Mycoplasma hyopneumoniae (MHYO) 232, and the 
air samples collected at a distance of 9.2 km from the pig 
population remained infectious [30]. Additionally, Brock-
meier et  al. reported that pigs co-infected with PRRSV 
and Actinobacillus pleuropneumoniae exhibited an 
increased frequency and duration of sneezing and cough-
ing, indicating a higher potential for aerosol transmission 
of pathogens [34]. Other important factors are aerosol 
particle sizes and environmental conditions. Alonso et al. 
demonstrated that the concentration of PRRSV viral par-
ticles in aerosols with different diameters range from 
6 ×  102 (0.4–0.7  μm) to 5.1 ×  104 (9.0–10.0  μm) copies/
m3 [35]. The half-life of PRRSV in aerosols is less than 
30 min at a temperature of 30 °C, and low RH conditions 
favor the survival of the virus in aerosols [2, 36], which is 
the basis for developing measures for virus aerosol disin-
fection in farms.

IAV
IAV, belonging to the Influenza A genus within the 
Orthomyxoviridae family, is an enveloped single-stranded 
negative-sense RNA virus with a diameter of 80–120 nm. 
It primarily causes a zoonotic respiratory disease charac-
terized by coughing, respiratory distress, and fever [37]. 
The airborne transmission has been detected under both 
experimental conditions and field conditions. Under field 
conditions, a study revealed that 71% of the 122 bio-
aerosol samples collected from large-scale farms tested 
positive for IAV [38]. And, IAV was isolated from indoor 
aerosol samples of a commercial pig farm, with the high-
est viral loads observed 7–11  days after an outbreak 
 (104–107 copies/m3), persisting for 20 days [39]. Further-
more, IAV has been isolated from air samples collected 
both inside and outside pig farms [40], indicating the risk 
of airborne transmission between farms. Further studies 
showed that the transmission distance has been observed 
to be up to 2.1 km downwind [40]. Under experimental 
conditions, Zhang et al. demonstrated IAV of S-O 2009 
IV strain was able to be aerosolized by infected animals 
and to be transmitted to susceptible animals by airborne 
routes in pig and guinea infection models, and the air-
borne distance was a range of 2.0–4.2 m [41].

There is a limited amount of literature available regard-
ing the aerosol transmission factors impacting swine 
influenza virus. Nevertheless, there exists a substantial 
body of research on other species that can be utilized as 
a point of reference. The primary factors influencing the 
capacity of IAV airborne transmission are viral strains, 
environmental conditions, and sizes of aerosol particles. 
Mubareka et al. [42] discovered notable variations in the 

aerosol transmission capacity among different strains of 
IAV, and subsequent investigations have confirmed that 
these differences can be attributed to amino acid muta-
tions in the neuraminidase and hemagglutinin gene 
of different IAV strains, which can affect the affinities 
between virus and receptors of different hosts and viral 
replication ability in the respiratory tract [43–45]. Envi-
ronmental conditions influence airborne transmission 
mainly by RH and ambient air temperature [46]. Under 
field conditions, research has also found that environ-
mental conditions with a RH of 20–35% and a tempera-
ture of 5  °C are most favorable for IAV transmission 
[47]. Furthermore, Lindsley et al. [48] conducted a study 
employing a human cough model, which revealed the 
presence of IAV RNA in aerosol particles of various sizes. 
The findings indicated that 35% of the RNA was detected 
in particles larger than 4  µm, 23% in particles ranging 
from 1 to 4 µm, and 42% in particles smaller than 1 µm. 
These particles fell within the respirable size range.

PEDV
PEDV, belonging to the Coronavirus genus within the 
Coronaviridae family, is an enveloped, single-stranded 
positive-sense RNA virus with a diameter of approxi-
mately 95-190  nm. It primarily causes severe enteric 
diseases with high mortality and watery diarrhea in 
7-day-old piglets [49, 50]. Aerosol transmission of PEDV 
has been observed up to a distance of 16.1 km under field 
conditions, as first detected by Alonso et al. in infectious 
viral particles in aerosol samples from PEDV-positive 
pig herds [51]. The aerosol transmission of PEDV is pri-
marily related to aerosol particle size, viral strains, wind 
direction, and the age of susceptible animals [52]. PEDV 
can be detected in aerosol particles across all diameter 
ranges, with the contents from 1.3 ×  106 (0.4–0.7 μm) to 
3.5 ×  108 (9.0–10.0 μm) copies/m3, and the aerosols with 
viral particles can survive in the environment for up to 
9 months [35, 53]. Research by Gallien et al. showed that 
under experimental conditions, non-InDel PEDV strains 
exhibited earlier detection and higher viral loads in the 
air under experimental conditions, indicating a higher 
efficiency of aerosol transmission [54]. Furthermore, 
Beam et al. utilized geospatial methods and meteorologi-
cal data to establish a correlation between wind direction 
and the aerosol transmission of PEDV [55]. Li’s research 
provided evidence of pre-weaning piglets being infected 
with PEDV through viral aerosols, as intranasal adminis-
tration of 1 mL of wild-type PEDV  (107 PFU/mL) resulted 
in typical PED symptoms in 5-day-old piglets [56]. How-
ever, Niederwerder et  al. found that aerosols generated 
from PEDV-inoculated animals did not cause disease in 
4-week-old piglets, suggesting that pigs of different ages 
may have varying tolerance to viral aerosols [57].
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PRV
PRV, belonging to the Varicellovirus genus within the 
Herpesviridae family, is an enveloped double-stranded 
DNA virus with a diameter of approximately 225 nm. It 
primarily causes an acute infectious disease characterized 
by high fever, abortion, and neurological symptoms not 
only in pigs, domestic livestock, and various wild animals 
[58]. Donaldson et  al. conducted an experiment under 
experimental conditions wherein healthy pigs in one 
pen were effectively infected through exposure to aero-
sols emitted by PRV-positive pigs housed in another pen, 
connected by a pipe [59]. Each PRV-positive pig released 
virus particles into the air, with peak titers reaching a 
maximum of  105.3 TCID50 within 24 h [59]. Grant et al. 
further substantiated the aerosol transmission of PRV 
through the utilization of a Gaussian diffusion model 
[60]. Under field conditions, aerosols containing PRV 
can be dispersed by the wind, reaching distances rang-
ing from 1.3 to 13.8 km or even more [60–62]. However, 
there is currently a lack of in-depth study on the airborne 
transmission of PRV.

Short‑distance airborne viruses
CSFV
CSFV, belonging to the genus Pestivirus within the Flavi-
viridae family, is an enveloped, single-stranded positive-
sense RNA virus with a diameter of 24–26 nm. It mainly 
causes acute fever and bleeding in pigs [63]. A study by 
Elbers et  al. analyzed factors related to the field trans-
mission of CSFV and suggested airborne transmission 
as one of the most important routes of infection [64]. 
Gonzalez et  al. demonstrated that CSFV can be trans-
mitted through aerosols in non-contact situations under 
an experimental condition, with a transmission distance 
of up to 1 m. The main factors affecting airborne trans-
mission of CSFV include RH, wind speed, viral dose, 
and viral strains [65]. Lu et  al. confirmed that low rela-
tive humidity and high wind speed are important factors 
contributing to CSFV outbreaks, as they promote the 
widespread dissemination of aerosols [66]. Two studies 
by Laevens et  al. showed that CSFV was only transmit-
ted through aerosols to other pig pens after all the pigs 
in the infected pen have become ill, suggesting that a 
certain level of viral loads is required for aerosol trans-
mission [67, 68]. Weesendorp et  al. found that airborne 
transmission played an important role in the later stage 
of CSF outbreaks, which aligns with Laevens’ conclusions 
[69]. Additionally, Weesendorp et al. further studied the 
airborne transmission of different CSFV strains with 
varying virulence and found that strains with higher viral 
concentrations or higher virulence were associated with 
higher viral loads in aerosol samples, ranging from  101.2 
to  103.0 TCID50/m3 (moderate virulence) to  101.6–103.8 

TCID50/m3 (high virulence) [70]. Moreover, research has 
shown that CSFV remains infectious in an aerosolized 
state for at least 30 min, with a half-life ranging from 4.5 
to 15 min [71].

ASFV
ASFV, belonging to the Asfivirus genus within the Asfar-
viridae family, is an enveloped double-stranded DNA 
virus with a diameter of approximately 200 nm. It is also 
the only known DNA arthropod-borne virus [72, 73]. 
ASFV primarily causes an acute, hemorrhagic, highly 
contagious disease in domestic and wild pigs, with a 
mortality rate of up to 100% [74, 75]. Wilkinson et  al. 
demonstrated that ASFV can be transmitted by aerosols 
from ASFV African strains-positive pigs, with a potential 
distance infecting up to 2.3 m, providing initial evidence 
of airborne transmission of ASFV under experiment con-
ditions [76]. European ASFV strains were also shown to 
spread through aerosols among pigs through aerosols, 
infecting healthy pigs in separate pens [77]. According to 
the latest research by Li et al., the transmission distance 
of ASFV Asian strains under field conditions can reach 
up to 10 m [78]. And secretions carrying high viral titers 
from ASFV-positive pigs during sneezing and coughing 
can be aerosolized and emitted into the environment 
[79, 80]. Under experimental conditions, the half-life of 
ASFV in aerosols was approximately 14  min, with viral 
titers up to  103.2 TCID50/m3 found in aerosol samples 
collected from rooms with ASFV-positive pigs [81]. 
The prevention of aerosol transmission of ASFV consti-
tutes a crucial component of prevailing biosecurity sys-
tems implemented in numerous pig farming operations. 
Regrettably, the present body of research on the mecha-
nism, determinants, and preventive strategies pertain-
ing to aerosol transmission remains insufficient. Given 
the persistent threat posed by ASFV to the worldwide 
swine industry, it is imperative that this area be urgently 
explored through future investigations.

Other viruses with unknown transmission distances
PCV
PCV, belonging to the Circovirus genus within the Circo-
viridae family, is a non-enveloped single-stranded DNA 
virus with a diameter of approximately 17 nm. It primar-
ily targets and impairs the immune system of susceptible 
animals [82, 83]. Verreault et al. discovered the presence 
of PCV2 in the air of pig barns, with a concentration of 
 107 copies/m3 [84]. Another study also detected PCV2-
positive aerosol samples in pig farms and slaughterhouses 
[85]. Additionally, PCV2 was found in nasal lavage sam-
ples from farmers (4/78) working in a pig farm, indicat-
ing a high risk of PCV2 transmission through aerosols 
[86]. However, the transmission distance and the precise 
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mechanisms of aerosol transmission of PCV2 are not yet 
clear.

SVDV
SVDV, belonging to the Enterovirus genus within the 
Picornaviridae family, is a non-enveloped, single-
stranded positive-sense RNA virus with a diameter of 
approximately 24–26  nm. It primarily causes vesicular 
diseases affecting the hooves, oral cavity, nostrils, and 
mammary glands in pigs [87, 88]. Under field conditions, 
Sellers et al. collected aerosol samples from SVDV-posi-
tive pig herds and detected SVDV viral particles in aero-
sols of different particle sizes, ranging from  101.4 TCID50 
(< 3 μm) to  102.6 TCID50 (> 6 μm) [89]. SVDV viral par-
ticles were also found in the noses of farmers who had 
been in contact with pigs for more than 5 min, with viral 
titers approximately  102.4 TCID50 [89]. It is suspected 
that the main source of aerosols containing SVDV is the 
shedding of virus particles from ruptured lesions which 
subsequently form aerosols, leading to rapid transmis-
sion [90]. And SVDV can be detected in aerosols within 
2–3 days after infection, with viral loads being 160 times 
lower than those of FMDV [23, 91]. However, there is 
currently a lack of in-depth study on the airborne trans-
mission of PRV.

JEV
JEV, belonging to the Flavivirus genus within the Fla-
viviridae family, is an enveloped, single-stranded pos-
itive-sense RNA virus with a diameter of approximately 
45–50  nm. It primarily causes a zoonotic disease char-
acterized by high fever and neurological symptoms [92]. 
JEV transmission has been exclusively described as being 
mosquito-mediated. However, studies have shown that 
the nasal mucosa serves as an entry and exit route for 
the virus [93, 94]. In an animal experiment, the average 
virus titer in the nasal secretions of infected pigs was 
2.25 ×  102 TCID50/mL [95], and even a low virus titer 
of 10 TCID50/mL successfully infected pigs through the 
intranasal route [96]. The aforementioned findings sug-
gest that pigs are susceptible to infection by aerosols 
carrying JEV. Thus far, only one study has provided evi-
dence of aerosol transmission of JEV between mice under 
experimental conditions [97].

PRCV
PRCV, belonging to the Coronavirus genus within the 
Coronaviridae family, is an enveloped, single-stranded 
positive-sense RNA virus with a diameter of approxi-
mately 100–160  nm. It is a natural deletion mutant of 
the enteropathogenic TGEV [98–100]. PRCV primar-
ily causes subclinical respiratory symptoms, such as 
mild bronchio-interstitial pneumonia and neutrophil 

infiltration [101, 102]. Costantini et  al. have demon-
strated that PRCV can replicate in the respiratory tracts 
of pigs and be transmitted through aerosols, infecting 
pigs of any age through contact or airborne transmission 
[103]. Research by Bourgueil et al. in experimental condi-
tions also demonstrated that air samples from pig pens 
with PRCV-positive pigs remained positive for 6  days, 
with the highest level reaching  101.87 PFU/m3 [104]. Cox 
et al. aerosolized solutions containing the PRCV-TLM83 
strain at a concentration of  107 TCID50, and successfully 
infected 1-week-old piglets by inoculating them with 
the collected aerosols [105]. Another research by Keep 
et al. indicated that there was no difference of viral load 
detection and pathology in respiratory tissues of PRCV-
infected pigs with two different infection routes, aerosol 
and intranasal/tracheal, which indicating a high sensitiv-
ity of PRCV-positive aerosols by pigs [106]. It is worth 
noting that PRCV is highly sensitive to environmental 
factors and can only be sustained under specific condi-
tions, namely 47% relative humidity and a temperature of 
20 °C [107]. Currently, there is a lack of research on the 
transmission distance and other comprehensive investi-
gations of PRCV aerosols.

Above all, the primary evidence concerning the trans-
mission of viral aerosols is derived from field and labora-
tory studies. Detecting aerosol transmission under field 
conditions, especially in the early stages, poses signifi-
cant challenges. Mathematical models based on epide-
miological surveys and case reports play a crucial role in 
understanding long-distance virus transmission and the 
emergence of new viruses. Extensive research has been 
conducted on the utilization of mathematical models in 
the context of FMDV [14–16], and this approach can be 
further applied to the investigation of other virus aero-
sols. Moreover, recent comprehensive case reports and 
source tracing analyses pertaining to the aerosol trans-
mission of ASFV [78] and COVID-19 [108] have yielded 
exemplary demonstrations. Consequently, more case 
reports on the aerosol transmission of viruses should be 
encouraged in the future. Furthermore, the transmission 
of viral aerosols in pig farms is significantly influenced by 
several key factors, including aerosol particle sizes, viral 
strains, the host sensitivity to viruses, weather condi-
tions, geographical conditions and environmental con-
ditions, which supply basis for the development against 
viral aerosols in pig farms.

Prevention of airborne viruses in pig farms
Airborne transmission plays a pivotal role in the 
containment of animal diseases and is equally significant 
in the dissemination of zoonotic diseases. Consequently, 
it is imperative to prioritize endeavors aimed at 
preventing airborne transmission. However, given 
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the scarcity of research on the prevention of aerosol 
transmission in pig farms and the current reliance 
on relatively simplistic preventive measures, here, 
we propose integrating insights from studies on viral 
aerosol transmission diseases in humans to propose 
potential preventive and control strategies that could be 
implemented in pig farms.

Establishment of early warning models
The implementation of a real-time early warning 
monitoring system or regional risk maps for viral aerosol 
transmission is crucial for disease prevention, control and 
the improvement of biosecurity measures for pig farms. 
The establishment of an early warning model for West 
Nile virus provides a valuable reference [109]. Firstly, it 
is important to note that the long-distance transmission 
of most aerosol-borne diseases, such as  FMDV [17, 
19] and PEDV [55], is strongly influenced by climate 
and geographical factors, as previously mentioned. 
Hence, climate factors including temperature, humidity, 
precipitation, wind speed, and wind direction, as well as 
geographical factors such as altitude and terrain, should 
be included as parameters within this model. Secondly, 
the inclusion of epidemiological investigation data 
pertaining to previous viral diseases within a particular 
region is crucial. Lastly, it is imperative to incorporate 
routine pathogen monitoring data pertaining to 
personnel, drinking water, wastewater, feed, and manure 
in pig farms as variables in this model, as they can serve 
as indicators for evaluating the extent of environmental 
contamination in a specific locality. For example, 
Silva’s report highlights the significance of wastewater 
monitoring in enhancing the early warning surveillance 
of SARS-CoV-2 transmission [110]. By collecting the 

aforementioned parameters, an early warning model 
can be established, which represents interdisciplinary 
research that holds significant implications for the pig 
farming industry.

Detection of viral aerosols
Monitoring viral aerosols in pig farms can function as 
a proactive measure to mitigate airborne transmission 
[111]. However, the efficacy of air sampling and pathogen 
detection is significantly diminished under field 
conditions due to high gas exchange rates. Consequently, 
enhancing the sensitivity of detection methods and the 
collection efficiency of air samplers can enhance the 
likelihood of identifying viral aerosols during the early 
stages of transmission. Given the escalating threat of 
ASFV to pig production, numerous detection methods 
for swine viruses with high sensitivity have been devised, 
such as digital polymerase chain reaction (dPCR) 
[112], insulated Isothermal PCR (iiPCR) [113], offering 
promising prospects for detection of viral aerosols. As 
for air sampling devices, Li et  al. used two different air 
samplers with different flow rates to collect aerosols 
within and between barns respectively, demonstrating 
the aerosol transmission of ASFV under field conditions 
[78]. In a separate study, Lee et al. developed a portable 
integrated bioaerosol sampling/ monitoring platform that 
can detect viral aerosol particles within 20 min using the 
signal of near-infrared (NIR)-to-NIR nanoprobes [114]. 
Moreover, Yao et  al. have successfully developed an 
ultrasensitive and rapid “sample-to-answer” microsystem 
for on-site monitoring of SARS-CoV-2 in aerosols, 
which has been effectively implemented in various 
public settings including airports and hospitals [115]. 
The mobility, high sensitivity, and capability of these 
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Viral strains
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Weather conditions

Geographical conditions
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SFV

FMDV PRRSV IAV PEDV PRV
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Viral aerosol detection

Air pretreatment

Prevention strategy

Fig. 1 Schematic diagram of aerosol transmission and prevention for swine viruses
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aforementioned techniques to capture aerosols in open 
spaces align precisely with the needs of contemporary pig 
farms. The potential integration of such devices within 
pig farms would undoubtedly enhance the efficacy of 
viral aerosol detection.

Air pretreatment
The process of air pretreatment involves the elimina-
tion of pathogens from the air prior to its entry into 
the barn, with the aim of ensuring its safety. A viable 
approach entails the implementation of air filtration sys-
tems to purify the air entering pig barns, a strategy that 
has been extensively employed in global large-scale pig 
farms, demonstrating its efficacy in disease control, par-
ticularly in the case of PRRS [116, 117]. However, the 
cost and maintenance requirements of air filtration sys-
tems make them affordable only for large-scale farming 
enterprises. An alternative, more cost-effective method 
is air disinfection. Previous studies have demonstrated 
the efficacy of chlorine dioxide aerosol as a disinfectant 
in fitness centers [118], and it has also shown promising 
results in the disinfection of ASFV, IAV, and Mycobacte-
rium [119, 120]. Hence, the utilization of chlorine dioxide 
as a means of air pre-treatment in pig barns exhibits con-
siderable promise. Furthermore, the exploration of chlo-
rine dioxide’s potential as a sustained-release formulation 
for ongoing disinfection within the barn presents a viable 
option. Additionally, studies have indicated that ions pro-
duced by electrostatic disinfectors and ozone gas dem-
onstrate efficacy in disinfecting and managing airborne 
aerosols containing SARS-CoV-2 [121, 122], thereby 
suggesting their potential applicability in pig farming 
settings.

Others
Other methods, such as the reduction of dust levels in 
pig barns and the establishment of disease-free zones, 
hold potential for the prevention and control of viral 
aerosols [2, 8]. Additionally, nasal vaccination, which 
can elicit both humoral and cellular immune responses, 
offers effective protection against respiratory pathogens, 
as the nasal cavity serves as the primary entry route for 
airborne pathogens [123]. Consequently, nasal vaccina-
tion presents a promising approach for attaining optimal 
protection against respiratory pathogens.

Conclusion
In conclusion, this review provides a systematic classifi-
cation and summary of prevalent airborne-transmitted 
viruses in pig production. As shown in Fig. 1, it encom-
passes the transmission characteristics, influential fac-
tors, and preventive strategies, with the objective of 
offering valuable references and innovative perspectives 

for mitigating and managing aerosol transmission. The 
significance of early-warning systems for viral aerosols, 
the enhancement of detection sensitivity and air sampler 
collection efficiency, as well as the development of air 
pretreatment strategies, are emphasized as crucial meas-
ures to establish a low-risk environment with fresh air for 
pig herds in the future.
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