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Abstract

Spray dried plasma (SDP) is a functional protein source obtained from blood of healthy animals, approved by the
veterinary authorities from animals declared to be fit for slaughter for human consumption. Blood of these animals
is collected at the slaughterhouse, treated with an anticoagulant, chilled and transported to industrial facilities in
which blood is centrifuged to separate the red blood cells from the plasma fraction. Plasma is then concentrated,
and spray dried at high temperatures (80 °C throughout its substance) to convert it in a powder. Such method
preserves the biological activity of its proteins, mainly albumins and globulins. SDP is mainly used in pig feed diets
to significantly improve daily gain, feed intake, production efficiency, and to reduce post-weaning lag caused by
the appearance of post-weaning diarrhea. Although SDP is considered a safe product and its manufacturing
process consists of several biosafety steps, the security of the SDP is often questioned due to its nature as raw
blood by-product, especially when emergent or re-emergent pathogens appear. This review provides an evaluation
and validation of the different safety steps present in the manufacturing process of SDP, with special focus on a
new redundant pathogen inactivation step, the UV-C irradiation, that may be implemented in the manufacturing
process of the SDP. Overall results showed that the manufacturing process of SDP is safe and the UV-C radiation
was effective in inactivating a wide range of bacteria and viruses spiked and naturally present in commercially
collected liquid animal plasma and it can be implemented as a redundant biosafety step in the manufacturing
process of the SDP.

Background
Spray-dried plasma (SDP) is a functional protein source
obtained from blood of healthy animals approved to be
sacrificed for human consumption after veterinary in-
spection. Blood of these animals is collected at the

slaughterhouse, treated with an anticoagulant, chilled
and transported to industrial facilities where the blood is
centrifuged to separate the red blood cells (RBC) from
the plasma fraction. Alternatively, the blood may be cen-
trifuged in the abattoir and then the chilled plasma
transported to the manufacturing plant. Plasma is subse-
quently concentrated either by membrane filtration or
vacuum evaporation and spray-dried at high tempera-
tures (80 °C throughout its substance) to convert it to
powder. This process preserves the biological activity of
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the proteins, mainly albumin and globulins, with im-
munoglobulin G (IgG) as the predominant antibody type
[1]. The SDP is produced from porcine (SDPP) or bo-
vine (SDBP) blood and is commonly used in human food
and animal feed [1, 2].
SDP has been used as a protein source in piglet feed

since the late 1980s [2, 3] and is typically used at an inclu-
sion level between 4 and 8% in the feed [4–6]. The use of
SDP in feed for weaned pigs significantly improves daily
gain, feed intake, production efficiency, and piglet survival
[4–6] compared to other specialty protein sources. SDP in
feed reduces diarrhea and the post-weaning growth lag as-
sociated with weaning stress [7–9].
Although the well documented benefits of SDP on animal

health and performance have long been established, its
safety may be questioned particularly in scenarios of emer-
ging or re-emerging diseases in animal populations because
it is produced from the abattoir collected animal blood.
Thus, the objective of the present manuscript is to review
the different biosafety steps present in the manufacturing
process of SDP with special focus on the development and
adaptation of UV-C irradiation of liquid plasma as an add-
itional biosecurity step that has recently been incorporated
in the manufacturing process at some facilities. This review
provides detailed information to the stakeholders of the
swine industry about the biosafety features and standards
used by manufacturers of spray-dried plasma that assure
the overall safety of SDP in feed for swine.

Industrial production of spray-dried plasma and
its biosafety steps
Commercial production of SDP is done following good
manufacturing practices (GMP) using high-quality

standards to produce a safe high-quality product. SDP is
produced from fresh animal blood as a raw material that
requires several safety steps in its production process to
eliminate risks for potential biohazards. There are nu-
merous safety features in the industrial manufacturing
process of SDP that effectively and collectively reduce
biohazard risks to produce a safe final product (Fig. 1).
The manufacturing process of SDP has several stages as
discussed below.

Blood collection at the abattoir
The first biosafety step in the production process of
SDP starts with the collection of the raw material.
Blood from healthy animals, passed as fit for slaugh-
ter for human consumption, is collected at abattoirs
under inspection by competent authorities. Blood is
collected in a stainless-steel pan with anticoagulants
added to prevent blood clotting. Sodium citrate [10]
or sodium tripolyphosphate [11] are anticoagulants
typically used for SDP production. The collection and
mixture of the blood from multiple animals contain
inherent neutralizing antibodies against numerous ha-
bitual pathogens. These inherent neutralizing anti-
bodies may reduce infectivity potential even before
further processing steps are done and contribute to
the biosafety of the final product [12–14].
To produce SDP, blood is only collected while the

carcass is entire, thus minimizing exposure to other tis-
sues. In addition, the blood collection system is separate
from the rest of the carcass processing chain. The entire
manufacturing process from the time that the blood is
collected to the final packaged product is done using a
closed system and avoids the possibility of cross

Fig. 1 Manufacturing process of spray-dried plasma and its biosafety steps
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contamination with other tissues or from the external
environment. In North America, the collection system at
some abattoirs delivers the blood to an industrial centri-
fuge to separate RBC and plasma. After separation, the
plasma is concentrated or not concentrated and refriger-
ated at 4 °C and transported to the processing plant. In
Europe, Latin America and other North American abat-
toirs the collection system delivers the whole blood to
stainless steel containers that are kept refrigerated until
subsequent transport to the processing plants.
Once the daily blood collection is completed, the en-

tire collection circuit is subjected to a clean in place
(CIP) process using food grade approved sanitizing
agents. The CIP process ensures proper sanitization of
the circuit.

Transport to the processing plants
Blood or plasma collected at the slaughterhouse is stored
in refrigerated containers and transported in isothermal
trucks that are sealed after filling. Each daily production
lot is identified, and full traceability is retained.
After the transport truck arrives at the processing

plant, a subjective inspection of the freshness of the
product is done and temperature of the liquid is mea-
sured to determine if the product is suitable for
processing.
When the truck is emptied, a CIP process is done to

assure the cleaning and sanitation of the tank before the
next collection is done.

Processing and spray-drying
At manufacturing plants that receive whole blood, the
blood is delivered to a storage tank and passed through
a closed system to an industrial centrifuge to separate
the plasma from the RBC fraction. The RBC are stored
for subsequent production of other products. Before
spray drying, the plasma is concentrated with mem-
branes using either nanofiltration or reverse osmosis. Al-
ternatively, concentration by a vacuum evaporator may
be used at some plants. After concentration, the plasma
is pumped into an industrial spray-dryer, which rapidly
dries the concentrated liquid plasma into powder.
Spray-drying involves the atomization of a liquid feed

material into a stream of heated air resulting in rapid
desiccation. The spray-drying process involves four
stages of operation that affect microbial survival and the
characteristics of the resulting product: 1) atomization of
the liquid source to form droplets into a hot chamber; 2)
contact between the spray and the drying medium con-
sisting of very hot air, at a high gas mass to liquid mass
flow volume ratio; 3) rapid moisture evaporation result-
ing in particle formation; and 4) separation of dried par-
ticles from the air stream [15–17] following a residence
time between 20 and 90 s.

During the drying process, droplets interact with the
hot air in the spraying chamber. As moisture is removed
the temperature of the dried particle increases to a value
similar to the outlet air temperature [18, 19]. Inlet and
outlet temperatures have a major influence on the in-
activation of microorganisms, but the outlet temperature
has the highest impact and is the primary critical control
point for the spray-drying process to inactivate microor-
ganisms [20]. The European Animal Protein Association
(EAPA) and the North American Spray Dried Blood and
Plasma Producers (NASDBPP) have established ≥80 °C
for the outlet temperature as a good manufacturing
process standard for microbial inactivation during the
SDP manufacturing process (www.eapa.biz).
Relatively high drying temperatures, rapid changes in

temperature, and rapid dehydration are the phenomena in-
volved in microbial inactivation. Dehydration causes dam-
ages in the cells, mainly in the cytoplasmic membrane [21,
22] and also produces damage to DNA, RNA and proteins
[23] inactivating many microorganisms [20, 22–27].
Many experiments of deliberated inoculation of

pathogens in plasma have demonstrated that spray-
drying is a very effective technology to inactivate im-
portant pathogens of interest in the swine industry.
Pathogen inactivation results from studies using spray
drying of plasma inoculated with Salmonella enterica
[28, 29], E.coli enterotoxigenic strains [30], Porcine re-
productive and respiratory syndrome virus (PRRSV)
[31], Pseudorabies virus (PRV) [31], Swine vesicular
disease virus (SVDV) [32], Porcine epidemic diarrhea
virus (PEDV) [33, 34] or African swine fever virus
(ASFV) [35] are summarized in Table 1. Furthermore,
in Table 2 results from other studies are summarized
demonstrating the lack of pathogen transmission in
pigs provided feed with SDP containing virus genome.
There was no transmission of Porcine circovirus 2
(PCV-2), when naïve pigs were fed diets with SDPP
containing genome copies of PCV-2 [36–38, 43].
PCV-2 is known to be one of the most thermal re-
sistant viruses of swine [44, 45]. Also, SDPP contain-
ing genome of PEDV has been reported to not be
infective when fed to millions of naïve pigs [40, 41].
A retrospective study of different SDPP samples and
sera from pigs provided feed with SDPP collected
over time, showed that SDPP containing RNA and
antibodies of Hepatitis E virus (HEV) did not trans-
mit HEV to pigs [39]. These results demonstrate that
detection of virus genome in spray-dried blood prod-
ucts should not be interpreted as an infectious mater-
ial, only that the virus genome segments are
detectable and present in the material [46]. Virus iso-
lation or bioassay techniques are necessary to distin-
guish if virus genome segments detected in SDP can
cause infection.
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Packaging, storage, traceability and quality control
As SDP is being produced, the powder is blended and
stored in a small silo, then directly bagged in new pack-
aging materials ensuring no cross contamination after
SDP production. All manufactured lots are submitted to
standard physicochemical and microbiological analysis
that confirm all commercial lots meet specifications.

Post drying heat treatment and storage time
The low moisture (< 9%) and very low water activity
(aw < 0.6) of SDP significantly reduce pathogen survival,
especially for bacteria and enveloped viruses during pro-
longed periods of storage [47].
As an additional safety feature, most manufacturers

package and store porcine SDP (SDPP) at room
temperature (> 20 °C) for at least 14 days before release
for sale. These storage conditions of SDPP demonstrated
to be effective in inactivating certain pathogens suscep-
tible to dry environments and mild temperatures, such
as PRRSV, PEDV and coronaviruses in general [34, 47].

Ultraviolet light irradiation
Ultraviolet exposure at a wavelength of 254 nm
(UV-C) is a nonthermal process that has a germi-
cidal effect by causing thymine-thymine and
thymine-cytosine dimers in DNA and thymine-uracil
dimers in RNA, which disrupts microbial
reproduction [48].
Technological advancements have resulted in the de-

velopment of UV-C irradiation devices that create a tur-
bulent flow which allows for effective irradiation of
opaque fluids of high viscosity. These UV devices have

been widely used in the food industry for the treatment
of complex opaque liquids or other substances including
juices [49–53], tea [54], milk [55–57], cheese [58], wine
[51], egg [59], dried seafood [60] and sliced fruits and
vegetables [61–64]. UV-C irradiation technology has also
been used for the inactivation of several viruses in hu-
man plasma products [65–71].

UV irradiation effect on bacteria survival in SDP
The effectiveness of different doses of UV-C irradi-
ation of liquid porcine or bovine plasma on survival
of several bacteria of interest in farm animals includ-
ing Salmonella typhimurium (S. typhimurium), Sal-
monella choleraesuis (S. choleraesuis), Enterococcus
faecium (E. faecium), and Escherichia coli (E. coli K88
and K99) has been evaluated [30, 72].
For all bacteria tested, the 4D reduction value (UV

irradiation dose at which a specific microorganism re-
duces its viability by 4 Log10) was achieved around
3000 J/L, which is the dose typically applied under
commercial manufacturing conditions. All bacteria
showed non-linear inactivation kinetics, having special
importance for S. typhimurium and E. coli K88 and
K99, in which tails appeared in their inactivation kin-
etics curves. The appearance of non-linear kinetic tail
inactivation of S. typhimurium excludes the potential
use of E. faecium as its surrogate. Tails appeared in
inactivation kinetics when, despite increasing the dose
of UV-C, the reduction in the population slows down
and is not proportional to the increase in UV-C ir-
radiation [73].

Table 1 Reduction factors obtained for different viruses subjected to the spray-drying treatment

Virus Nucleic acid Envelope Virus size (nm) Virus inactivation expressed as Log 10 TCID50 Reference

PRRSV ssRNA Yes 50–65 4.0 log [31]

PEDV ssRNA Yes 90–190 > 5.2 log [34]

PEDV ssRNA Yes 90–190 > 3.6 log [33]

PRV ssDNA Yes 150–180 5.3 log [31]

ASFV dsDNA Yes 80–200 ~ 4.0 log [35]

SVDV ssRNA No 22–30 6.0 log [32]

Table 2 Studies that demonstrated lack of transmission of different swine viruses when PCR genome copies were present in SDP

Virus PCR genome copies SDP inclusion level in feed Feeding duration Results Reference

PCV-2 2.47 × 105.0 8% 45 days Not infective [36]

PCV-2 106.7 4% 42 days Not infective [37]

PCV-2 7.56 × 105.0 8% 32 days Not infective [38]

HEV Positive 8% 28 days Not infective [39]

PEDV Positive (Ct: 30.1) 5% 14 days Not infective [40]

PEDV Positive 3–8% 7 to 14 days Not infective [41]

PRRSV Positive 3–8% 7 to 21 days Not infective [42]
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UV irradiation inactivation of enveloped and non-
enveloped viruses in SDP
The effect of UV-C on different viruses of interest in the
swine industry was also determined [74]. Viruses se-
lected for testing was based on their different physico-
chemical characteristics, types of genome (DNA or
RNA), genome lengths (long and short genomes), pres-
ence or absence of envelope and resistance to other in-
activation processes. Also, viruses belonging to the same
family and genus were selected to determine if they
would have similar behaviors under UV-C irradiation.
As outlined by the WHO (2004) guidelines [46], it is al-
ways prudent to test the inactivation process with the
virus of interest, choosing the strain with the greatest
known resistance. However, it is also important to test
viruses with different physicochemical characteristics to
obtain information about the robustness of the inactiva-
tion process [46].
Enveloped viruses selected for the studies included

PRV, PRRSV, PEDV, Bovine viral diarrhea virus
(BVDV), Swine influenza virus (SIV) and Classical swine
fever virus (CSFV) and Porcine parvovirus (PPV), SVDV,
PCV-2 and Senecavirus A (SVA) were chosen as non-
enveloped viruses. All viruses were inoculated in liquid
plasma and subjected to different UV-C doses. The in-
activation curve for each virus was constructed by titra-
tion of the samples in their respective target cell at each
UV-C dose. In general, results showed that enveloped vi-
ruses have a higher sensitivity to UV-C than non-
enveloped ones, because the 4D reduction value was less
than 2000 J/L for all enveloped viruses (Table 3). Fur-
thermore, UV-C irradiation of ASFV (strain Badajoz 71
adapted to Vero cells) inoculated plasma at 3000 J/L was
apparently able to reduce infectivity around 4 log10
TCID50/mL [75].
Within the group of enveloped viruses, pestiviruses

(CSFV and BVDV) had similar UV-C inactivation

indicating that viruses belonging to the same genus
could be used as a surrogate organism.
Regarding non-enveloped viruses, PPV and SVA had

4D reduction values very close to 3000 J/L and SVDV
had a slightly higher 4D value. In the case of PCV-2, the
4D value could not be calculated because less than 4
log10 TCID50/mL was measured in the inoculated
plasma before UV-C treatment. Even so, PCV-2 had
higher resistance to UV-C treatment because inactiva-
tion was only 2 and 3 log10 TCID50/mL at 3000 and
9000 J/L, respectively. These results are in agreement
with the available literature, confirming the well-known
high resistance of PCV-2 to inactivation treatments [76].
The overall results of the use of UV-C irradiation on

viruses demonstrated that it is a useful technology to
significantly reduce the viral and bacterial load in
plasma. Considering that UV-C can be included as a bio-
safety step before the spray-drying process, the reduction
factor achieved by UV-C would be additive to that ob-
tained by spray-drying, which has been demonstrated for
some of these viruses as previously discussed (Table 4).
Validation of the UV irradiation effect in an animal

model.
To validate the effectiveness of the plasma UV-C ir-

radiation measured by means of the viral load reduction
in cell culture, a bioassay was done with different groups
of pigs injected intraperitoneally with UV-C irradiated
commercial liquid plasma at 0 J/L (untreated plasma),
3000 J/L, and at 9000 J/L [77]. The results of the bioassay
showed that none of the pigs in the groups that received
liquid plasma irradiated by UV-C at either dose became
infected or seroconverted against the different virus ge-
nomes that were detected in the initial plasma (PCV-2,
PRRSV (European strains), SIV, PPV, HEV, Rotavirus A
(RVA); thus, confirming the efficacy of UV-C demon-
strated in vitro in a previous study [74]. Detection of a
viral genome in the untreated liquid plasma does not
imply infectivity by a given virus. The swine bioassay
was a very sensitive test to ascertain the infectiousness
of the detected genome of these viruses in the plasma
used in these experiments.

Discussion
The manufacturing process of SDP involves several
safety features including veterinary inspection at the ab-
attoir, neutralizing antibodies present in pooled plasma,
the spray-drying process and post-processing storage.
Veterinary inspection is crucial to ensure that blood
from only healthy animals slaughtered for human con-
sumption is the exclusive source of raw material to be
used for the manufacturing of blood products. There-
fore, it is vital to understand inherent safety features,
such as the actions of neutralizing antibodies on patho-
gen load, and to validate the biosafety steps that are part

Table 3 Log reduction of viral titers expressed as Log 10 TCID50

at UV-C doses of 3000 J/L in liquid plasma (references [74, 75])

Virus Log 10 TCID50 reduction at 3000 J/L

PRV 4.5

PRRSV > 4.0

PEDV > 4.1

BVDV† > 4.2

SIV > 5.1

CSFV > 4.1

ASFV ~ 4.0

SVDV 2.6

PCV-2 1.8

PPV > 4.0

SVA 3.7
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of the manufacturing process of SDP which are directly
implemented to inactivate and/or eliminate pathogens.
The action of neutralizing antibodies to endemic path-

ogens in the population has been demonstrated in vari-
ous studies [12–14] to be an inherent safety step that
may contribute to the safety of blood products. The
spray-drying conditions used during the manufacturing
of SDP represent the most critical step that contributes
to the inactivation of different pathogens [28, 31–34].
Also, certain storage conditions (such as room
temperature > 20 °C for 14 days) have been demonstrated
as a safety treatment for some enveloped viruses and
bacteria [34, 47]. All of these biosafety steps contribute
to the global safety of SDP, as demonstrated in several
in vivo studies [36–39, 43, 45, 78].
Since SDP is produced from plasma with high protein

concentration and biological activity, it is important that
these proteins be preserved during processing. UV-C ir-
radiation was profiled as a good candidate to be imple-
mented in the manufacturing process as a new
redundant biosafety step because of its limited impact
on biologically active proteins that benefit animal health.
Technological advancements have resulted in the devel-
opment of UV-C irradiation devices based on turbulent
flow, which enables the irradiation of opaque fluids with
high viscosity efficiently. In addition, these UV devices
have been widely used in the food industry for the treat-
ment of other complex opaque liquids like milk or fruit
juices.
Despite that the implementation of UV-C and spray-

drying as inactivation processes has shown its effective-
ness in reducing bacterial and viral loads in plasma, the
presence of some of these pathogen genomes (especially
viruses) detected in SDP by real time PCR (qRT-PCR)
generates doubts about its potential infectivity. The bio-
safety steps to produce SDP inactivate several pathogens,
but the pathogen genome is not eliminated from the
final product and the genetic material can be detected

by PCR techniques. However, PCR techniques are not
able to differentiate between infective and non-infective
viral particles [46]. In vivo bioassays or feeding studies
are still considered the most accurate method of distin-
guishing if viral particles in SDP are infective or not, and
as previously discussed SDP has shown to be non-
infective in feeding studies, even though viral genome
was present in SDP.
The UV-C treatment for the tested pathogenic bacteria

and viruses showed Log10 reduction values very close or
superior to the 4D value using industrial manufacturing
conditions (3000 J/L). Recommendations of WHO
(2004), which were developed for the evaluation of in-
activation/removal of viruses in human plasma deriva-
tives, indicates that the use of two different inactivation
methods with different mechanisms of action represent
redundant biosafety steps. Therefore, the combination of
UV-C irradiation of the liquid followed by spray-drying
at 80 °C throughout its substance must be considered re-
dundant biosafety steps for production of SDP. The
Log10 reduction factors of each of the steps should be
considered cumulative within the manufacturing
process, thus increasing the overall inactivation capacity
of the system (Table 4).

Conclusion
The manufacturing process involves several safety fea-
tures that mitigate any biological risk for SDP use as an
ingredient in feed for pigs. The collection of blood from
healthy animals and the spray-drying process are two of
the safety steps that have been proven to inactivate nu-
merous pathogens of interest for the swine industry.
Furthermore, the presence of neutralizing antibodies
may be considered as an additional inherent safety step
for pathogens that are able to produce neutralizing anti-
bodies. Also the post-processing storage of SDP at 20 °C
for 14 days has proven effective for certain enveloped vi-
ruses like coronaviruses and PRRSV, while prolonged

Table 4 Combined inactivation steps in the manufacturing process of SDP. Inactivation expressed as colony-forming unit (cfu) per g
in case of bacteria and Log10 TCID50 for viruses

Bacteria /Virus (enveloped or non-enveloped) Spray-Drying Reference UV-C Reference Storage at 20 °C
for 14 d

Reference Combined Theoretical
Inactivation

E. coli K88 7.3 [30] 4.3 [30] 11.6

E. coli K99 7.7 [30] 4 [30] 11.7

Salmonella typhimurium 5.4 [29] 3.6 [72] > 4.2 [29] > 13.2

Salmonella choleraesuis 5.3 [29] 5.6 [72] > 4.8 [29] > 15.7

PRV (enveloped) > 5.3 [31] 4.5 [74] > 9.8

PRRSV (enveloped) > 4.0 [31] > 4.0 [74] > 4.0 [47] > 12.0

PEDV (enveloped) > 5.2 [34] > 4.1 [74] > 3.5 [34] > 12.8

ASFV (enveloped) ~ 4.0 [35] ~ 4.0 [75] ~ 8.0

SVDV (non-enveloped) > 6.0 [32] 2.6 [74] > 8.6

Blank cell means that the inactivation associated with that step has not been determined
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storage before release for sale provides more time for
authorities to react to an outbreak of a foreign animal
disease in the manufacturing region.
Overall results obtained with UV-C irradiation were

effective for inactivating a diversity of bacteria and vi-
ruses spiked and naturally present in commercially col-
lected liquid animal plasma. Since the UV-C mechanism
of inactivation targets nucleic acids and is different than
the thermal inactivation of the spray-drying process,
UV-C can be considered an independent biosafety step
in the manufacturing process of SDP. UV-C as a safety
step complies with the WHO recommendations for the
design of redundant biosecurity steps in the manufactur-
ing process of human blood products for medical use.
Furthermore, UV-C technology can be incorporated into
the manufacturing process, and in fact it is already used
in some spray-drying industrial plants. In conclusion,
UV-C irradiation of liquid plasma is a suitable additional
inactivation step for the industrial production process of
SDP that further supports the biosafety of SDP use in
animal feed.
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