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Abstract

Background: So far, three porcine hemoplasmas (PH) have been identified, namely Mycoplasma suis, Mycoplasma
parvum, and Mycoplasma haemosuis. The first one is the main agent associated with porcine hemoplasmosis, a
possible cause of economic losses in pig production. Thus, this work aimed to detect and quantify PH 16S rRNA in
finishing pigs and to associate its load estimate with average daily weight gain (ADWG). For this purpose, whole
blood samples from 318 pigs were collected at an age of 75 days (d0) when the pigs entered the finishing phase
and 105 days later (d105). To calculate ADWG, the animals were weighed at the abovementioned dates. Then, DNA
from blood samples were submitted to a qPCR targeting the 16S rRNA gene for PH. Spearman correlation test was
performed to investigate potential associations between ADWG and the quantification values. Lastly, the molecular
characterization of PH was done by sequencing the 23S rDNA gene.

Results: Out of the 318 samples, 190 (59.74%) were positive on d0, and 304 (95.6%) were positive on d105. A
significant correlation was observed (p < 0.05), albeit with a low coefficient value (0.18), when comparing ADWG
with quantification values on d105. The phylogenetic analysis based on the 23S rDNA gene showed that four
sequences were closely related to M. parvum, and one sequence was positioned in the M. suis cluster.

Conclusion: Two PH, M. suis and M. parvum, were detected in a Brazilian pig farm. Moreover, increasing occurrence
through time was observed, which may have affected the productive performance of positive animals, mainly at
the end of the finishing phase, when antimicrobials are removed.
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Background
Hemotropic mycoplasmas (HMs), also known as hemo-
plasmas, are commonly associated with infectious anemia
in pigs [1]. So far, three hemoplasma species have been
described infecting swine, namely M. suis, M. parvum,
and M. haemosuis [2–4]. Mycoplasma suis is the main

agent associated with the swine hemoplasmosis or epery-
throzoonosis, which is caused by the pathogen’s adherence
to the RBCs surface, triggering the cell’s death [5, 6]. Also,
swine hemoplasmosis has been pointed out as a possible
cause of economic losses worldwide [1, 6, 7]. On the other
hand, M. parvum infection has been associated with the
absence of clinical signs, even at the peak of bacteremia
[8]. Recently, M. haemosuis was detected in fattening pigs
with skin lesions, fever, and anemia [9]. Even though the
pathogenic potential of M. haemosuis, the more recently
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porcine hemoplasma described in China [4], Korea [10],
and Germany [9], has not been fully investigated, clinical
signs associated with it resemble those previously de-
scribed for M. suis infections [7].
Porcine hemoplasmas (PH) have been described in

China [4, 11], the United States [12], Brazil [13–16, 17,
18], Germany [19, 20], France [21], South Korea [10],
Japan [22, 23], Hungary [24], Switzerland [25], and
Argentina [26]. Additionally, the first three countries,
abovementioned, are amongst the four biggest pork pro-
ducers in the world [27]. In general, PHs are small bac-
teria found attached to host’s red blood cells, causing, in
some cases, deformations to the cell structure and indu-
cing eryptosis [28]. PH-infected swine can present the
disease as acute and/or chronic manifestations. While
the first is mostly associated with M. suis infection and
characterized by severe anemia, jaundice, fever, gangren-
ous ear necrosis, enteritis, hypoglycemia and possible
death, the chronic form of the disease seemns to be
more common [7]. Moreover, PH infection in pigs may
range from asymptomatic to growth retardation, poor
reproductive performance, mild anemia, fever, skin le-
sions, and immunosuppression [3, 9, 27, 28].
Indeed, the chronic presentation of swine hemoplas-

mosis has been raised as a concern regarding production
losses in the finishing phase of pig production, in which
the most significant weight gain takes place [29]. There-
fore, a reduction in productive and reproductive per-
formance and the predisposition of PH-infected pigs to
secondary infections, may lead to financial losses in pig
production [4]. Besides, it has been argued that pigs sub-
mitted to chronic challenges are prone to present a de-
crease in feed consumption and feed conversion rates
[30]. However, to the best of authors’ knowledge, these
effects have not been assessed in hemoplasmas-infected
pigs yet.
Even though PHs have been reported in the intensive

[18, 31] and extensive [15, 17] pig production systems in
Brazil, the influence of these agents on productive swine
performance has not been assessed. Therefore, this body
of work investigated the occurrence of PH and its associ-
ation with average daily weight gain (ADWG) in finish-
ing pigs from a commercial farm in Brazil.

Results
PH occurrence and load estimate by qPCR
All DNA samples amplified the predicted product for
the mammals-gapdh gene. Out of the 318 samples, 190
(59.75%) were positive for PHs by the qPCR assay on d0,
and 304 (95.60%) were positive on d105. The overall PH
incidence was 93.75% (120/128). Among these positive
animals, 58.6% were female (75/174) and 35.15% male
(45/136) pigs. Besides that, eight (2.52%) animals were

negative in both blood sampling, and only six (1.89%)
animals were positive on d0 and negative on d105.
Regarding the qPCR assays, all samples were run in

duplicate, in 22 different plates, with reaction efficiencies
(E) ranging from 92.2 to 102.7%. The analytical assay
sensitivity was 101 numbers of PH 16S rRNA copies/μL.
The associated slope ranged from − 3.526 to − 3.259, the
determination coefficient (R2) values ranged from 0.987
to 0.998, and the y-Int from 38.58 to 42.1 (Table S1).
Cycle quantification values ranged from 19.17 to 39.94
on d0, and the SQ mean values ranged from 1.07 × 100

to 4.30 × 106 PH 16S rRNA copies/μL. Similarly, on
d105, Cq values ranged from 15.82 to 39.38, and SQ
values ranged from 1.41 × 100 to 4.72 × 106 copies/μL
(Table S2). Curiously, a significant difference between
SQ values from male and female pigs on d0 and d105
was observed (Table 1).
The samples in which an estimate of PH bacteremia

was quantifiable (n = 108) were distributed into eight
groups (100 to 107), according to SQ values (PH 16S
rDNA copies/μL) on d0 and d105 (Fig. 1). It was also
noted that 68.5% (74/108) of the positive samples, for
which an estimated bacteremia was quantifiable, showed
increased SQ values during the finishing phase, whereas
31.48% (34/108) of these samples presented a decrease
in the SQ values. Furthermore, 89 (29.28%) out of the
304 positive samples showed inconsistent quantification
results even after tested in triplicate (Table S2). This fact
is most likely due to the Monte Carlo effect [31], which
represents an inherent limitation of the technique,
mainly in samples with a low number of porcine PH 16S
rDNA copies/μL. Even though PH 16S rDNA could not
be quantified in these samples, they were considered
positive.

Associations between PH 16S rDNA quantification and
ADWG
Regarding the ADWG according to the gender of sam-
pled animals, males showed a mean of 0.95 kg/day (SD =
0.12; Var = 0.015) and females a mean of 0.88 kg/day
(SD = 0.12; Var = 0.011). The Wilcoxon test was per-
formed to compare the ADWG and the pigs’ gender,
resulting in a significant difference between the means
of ADWG of male and female pigs (p = 6.24 × 10− 9). Be-
sides this, the difference of SQ (d105 – d0) and ADWG
mean was significant and positive on the Spearman cor-
relation test (Rho = 0.142; p = 0.011) with low coefficient
value, indicating that the two variables were weakly cor-
related. Still, no significant results were observed on the
Spearman correlation test between ADWG and SQ
mean of blood samples on d0 (p = 0.904). However,
when comparing ADWG with SQ mean at d105, a sig-
nificant correlation was observed (p = 0.001), but with
low coefficient value (0.181) (Fig. 2; Table 2).
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Molecular characterization of PH
BLASTn analysis for the obtained 23S rDNA sequences
showed 91.10 to 99.88% identity with M. parvum strain
Indiana (NR121958) and 90.10 to 96.54% identity with
M. suis strain Illinois (NR103970), with query coverage
ranging from 98 to 99 (Table 3).
Phylogenetic analysis of the five Mycoplasma spp. 23S

rDNA sequences, estimated by the Bayesian method,
showed that four 23S rDNA sequences were positioned
close to M. parvum strain Indiana (NR121958) and only
one (MT530439) was closely related to M. suis strain
Illinois (NR103970) (Fig. 3). The numbers at the nodes
correspond to bootstrap values accessed with 1.000.000
generations. Bacillus cereus and Bacillus subtilis were
used as outgroup.

Discussion
Few studies have been conducted regarding the occur-
rence of PH and its economic impact on commercial pig
farms in the world. This is the first report of PH detec-
tion by qPCR correlated to the average daily weight gain
(ADWG) and its impact on finishing pigs from Brazil.
In the present work, PH was current in 59.75% of the

animals at the beginning of the finishing phase, increas-
ing its occurrence through time, reaching 95.60% at the
end of this period (d105). Moreover, most animals
(68.51%) showed an increase in PH SQ values (copies/
μL) from d0 to d105, while 120 animals (37.73%) became
positive after d0. These results agreed with previous
studies, in which higher occurrence has been observed

in older animals [4, 7, 30]. Accordingly, a study con-
ducted in Germany [32] reported a PH occurrence of
31.25% in sows and 14.35% in piglets, suggesting that
animals tend to become infected throughout the life.
Even though the transmission of PH has been commonly
associated with the infestation by the louse Haematopi-
nus suis [33], its role in the transmission may have lower
importance, since commercial pig farms are very techni-
fied and have adequate sanitary measures. As reported
in the literature [28, 34], natural infections may be asso-
ciated with fomites, like the reuse of needles and surgical
instruments. Therefore, we believe that mechanical
transmission by fomites and direct contact with infected
blood, like cannibalism and fights, might have resulted
in the transmission of PH between the sampled animals.
Indeed, the mechanical transmission of PH may be a
problem for the pig production in Brazil, since nearly all
finishing animals usually originated from different herds,
resulting in the introduction of positive animals and the
dissemination of these agents.
Quantitative PCR results showed that more than 80%

of the positive animals presented PH loads between 10− 1

and 104 copies/μL, corroborating previous studies con-
ducted in Brazil [15, 17, 18, 31]. PHs tend to establish
chronic infections with nonclinical presentations in pigs
[6, 35]. According to our findings, most animals from
this study might have presented a chronic infection
characterized by low bacteremia and lack of clinical
signs. This information could also explain the high oc-
currence of PH in Brazil once chronically infected

Table 1 Starting quantity values (copies/μL) on d0 and d105 samples

D0 samples D105 samples

SQ mean SD Variance SQ mean SD Variance

Male pigs 5.82 × 104a ±3.99 × 105 1.6 × 1011 2.35 × 105b ±1,12 × 106 7.61 × 1010

Female pigs 7.21 × 103a ±3.59 × 104 1.3 × 109 8.16 × 104b ±2.76 × 105 1.26 × 1012

means followed by different superscript letters indicate significant difference (p < 0.05)

Fig. 1 Box plot showing the qPCR Cq results and distribution of SQ values. Quantification cycle (Cq) results and distribution of starting quantity
(SQ) degree of dispersion by each sample in qPCR for PH-16S rRNA gene on d0 (a) and d105 (b)
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animals play an essential role as a source of the infec-
tion. As observed previously, qPCR is very efficient at
detecting extremely low bacterial loads and should be
used as the standard test for PH detection worldwide.
Besides, since conventional PCR and blood smears have
demonstrated lower sensitivity and could result in false-
negative results, the occurrence of PH in pig farms could
be underestimated [12, 20].
Regarding PH infection and its impact on pig produc-

tion, our results showed that ADWG and bacteremia esti-
mates were weakly correlated, indicating that there might
be other pathogens associated with the decrease of
ADWG in the evaluated animals. An example could be
the respiratory disease caused by Mycoplasma hyopneu-
moniae [36], which has been commonly associated with a
decrease in productivity. Furthermore, ADWG of PH-
infected male pigs was higher than ADWG from female
pigs (0.95 kg/day and 0.88 kg/day, respectively). This could
be associated with the body composition, which is quite
different between genders, where entire males are more
efficient in feed conversion than females [37]. Similarly,

when the productive performance of immunologically cas-
trated boars, physically castrated males, entire males, and
entire female pigs were compared, the results indicated
that immunologically castrated boars were more efficient
in feed conversion [38]. Therefore, in this study, the sam-
pled males were previously immune castrated, and so, a
higher ADWG was expected compared to the female pigs.
Similarly, to the average daily weight gain, bacteremia

estimate levels were higher in male pigs than those
found among female pigs in both analyzed phases (75
and 190 days of life). However, we should consider that
nearly 90% of the positive animals showed SQ values
lower than 104 copies/μL, indicating that these pigs were
chronically infected and did not show severe signs of
anemia [18]. Besides, it is likely possible that M. parvum
is the primary pathogen associated with PH in Brazil,
and this PH does not cause any clinical signs, even at
the peak of the bacteremia, and yet, seems to persist at
low levels in the blood [8]. On the other hand, when
comparing ADWG with SQ mean on d105, a significant
correlation was observed. This fact may be associated
with the withdrawal of antimicrobials 15 days before
slaughter, aiming at avoiding the presence of residues in
the meat. Besides, antimicrobials as metaphylaxis may
also control PH infection and its productive impact on
the finishing phase, allowing a higher multiplication only
after its complete withdrawal. Considering that anti-
microbial use in pig production is a big concern, many
countries have prohibited its use as growth promoters
and disease prevention. Therefore, it is possible that dis-
eases inhibited by antimicrobials’ preventive use may
emerge and become a serious problem in pig production
worldwide.

Fig. 2 Box plot showing the correlation between ADWG and SQ values on d105. Correlation of starting quantity (SQ) in samples of d105 and
distribution of average daily weight gain (ADWG) degree of dispersion by each animal

Table 2 Potential correlations between ADWG and SQ values
on d0 and d105

Variables Coefficient P-value

SQ1 x SQ2 0.08 0.05

SQm x ADWG 0.14 0.01

SQ1 x ADWG 0.007 0.94*

SQ2 x ADWG 0.18 0.001

SQ1 Starting quantification value on d0, SQ2 Starting quantification value on
d105, SQm Starting quantification mean
*There was no correlation
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The phylogenetic tree based on the 23S rDNA gene of
hemoplasmas showed the occurrence of both M. suis and
M. parvum in the studied herd. The concomitant presence
of both PH has been previously reported in sows from
southern Brazil [30]. When comparing M. suis strain Illi-
nois to M. parvum strain Indiana, bacteremia levels, at the
peak, were one log lower for M. parvum than M. suis [8].
Additionally, these two pathogens are genetically related,
and the genome of M. parvum has orthologous for all the
protein-coding sequences (CDS) with metabolic functions
identified in the genome of M. suis [8]. Still, a set of
unique paralogous CDS of M. suis have a higher percent-
age of signal peptides detected than M. parvum CDS,
which could play an important role in the pathogenicity of
the first [8, 12]. Considering the high degree of genetic
similarity between M. suis and M. parvum, it is crucial to
use less conserved gene fragments, e.g. 23S rDNA, to as-
sess the phylogenetic positioning of these agents, and thus,
get a better picture of PH occurrence in swine herds
worldwide.

Conclusion
Porcine hemoplasmas occurrence increased through the
finishing phase, showing an inverse correlation between
PH 16S rDNA quantification values at d105 and average
daily weight gain. Besides, the occurrence of two porcine

hemoplasmas in the same herd, namely M. suis and M.
parvum, was reported, indicating possible coinfection.

Methods
Study design and sampling
The study was carried out from November 2018 through
March 2019 in a pig production farm belonging to an inte-
gration system, located in Patos de Minas (18.5873°S,
46.5147°W), Minas Gerais State, southeastern Brazil. It was
conducted with the approval of the School of Agricultural
and Veterinarian Sciences’ Animals Ethics Committee
(CEUA) under permit number 073778/19. Appropriate per-
mission was obtained from the farm owners before collec-
tion of blood samples from the animals.
In total, 318 pigs (male and female) from the same

batch were selected at the beginning of the rearing/fin-
ishing phase, approximately 75 days of age (d0). The se-
lected pigs were identified with ear tags with random
numbering and weighed at the beginning and at the end
of the finishing phase (d105), to determine the average
daily weight gain (ADWG). The animals were slaugh-
tered at 180 days of life (d105), and for each animal in-
cluded in the assay, a whole blood sample was collected
in Vacutest® tubes, containing ethylenediaminetetraacetic
acid (EDTA). Blood collection was carried out on two
occasions: first, at the beginning of the finishing phase

Table 3 BLASTn information on the five 23S rDNA sequences obtained from this study

Sample
ID

Collection
Time

Accession
Number

Identity % Query
Cover
%

M. parvum strain Indiana NR121958.1 M. suis strain Illinois NR103970.1

36 d0 MT 530438 99.65 90.21 99

d105 MT 530441 99.88 90.39 98

43 d0 MT 530439 91.10 96.54 99

104 d0 MT 530440 99.65 90.18 98

d105 MT 530442 99.53 90.10 99

Fig. 3 Phylogenetic tree based on Mycoplasma spp. 23S rRNA sequences. Phylogenetic analysis based on the Bayesian method, and the TrN + G
evolutionary model. Accession numbers are indicated in the sequences. Porcine hemoplasmas sequences detected in the present study are
highlighted in bold. Numbers at the nodes correspond to bootstrap
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(d0) and, second, at the end of this phase, in a slaughter-
house (d105). The animals have no obvious clinical
symptoms during blood sampling. After sampling, the
blood samples were aliquoted in cryogenic tubes, condi-
tioned in liquid nitrogen and transported to the Swine
Medicine Laboratory, in the Department of Veterinary
Clinic of the Faculty of Agricultural and Veterinary Sci-
ences (FCAV– UNESP), campus of Jaboticabal, where
they were stored at − 80 °C until processing.

DNA extraction and conventional (c) PCR for the
mammals-gapdh gene
DNA extraction was performed as previously described
protocol [39]. To rule out the presence of inhibitors in
the extracted DNA samples and the occurrence of false
negative in the qPCR for PHs, all samples were submit-
ted to a conventional PCR (cPCR) using the gapdh-F
primer oligonucleotides (5′-CCTTCATTGACCTCAA
CTACAT-3′) and gapdh-R (5′-CCAAAGTTGT
CATGGATGACC3’), which flank a fragment of the
mammals-gapdh gene [40]. The amplified products were
subjected to horizontal electrophoresis on 1% agarose
gels stained with Ethidium Bromide (1 μL/20 mL) (Life
Technologies™, Carlsbad, California, USA) in TBE pH 8.0
running buffer at a current of 90 V/50 mA for 50 min.
Then, the amplified products were visualized using an
ultraviolet light transilluminator (Chemi-Doc, Bio-Rad®).

Porcine hemoplasmas-qPCR based on the 16S rRNA gene
DNA samples positive in the cPCR for the endogenous
mammals-gadph gene were subjected to a qPCR assay based
on the 16S rDNA coding gene for PH, using the primer oli-
gonucleotides (Integrated DNA Technologies®, Coralville,
Iowa, USA) F (5′- CCCTGATTGTACTAATTGAATAAG-
3′) and R (5′-GCGAACACTTGT-TAAGCAAG-3′) and
the TaqMan hydrolysis probe (5’FAM- TGRATACACA
YTTCAG-MGBNFQ3’ [12]. The amplification reaction was
performed according to the protocol described in the litera-
ture [12], completed in a CFX 96 Thermocycler (BioRad®).
Ten-fold serial dilutions were performed, from 107 copies/

μL until 101 copies/μL, to determine the different concentra-
tions of IDT SMART plasmids (Integrated DNA Technolo-
gies, Coralville, Iowa, USA) containing the target sequence.
In all qPCR assays, plasmids and sterile ultrapure water were
used as positive and negative control, respectively (Nucle-
ase-Free Water, Promega®, Madison, United States).

cPCR for Mycoplasma spp. based on the 23S rRNA gene
To amplify a 800pb fragment of Mycoplasma spp. 23S
rRNA gene fragment, a cPCR assay, was performed
using the primers 23S_HAEMO_F (5′- TGAGGGAAAG
AGCCCAGAC-3′) and 23S_HAEMO_R (5-’-GGACAG
AATTTACCTGACAAGG-3′), described by Mongruel
et al. (unpublished). The amplification reaction contained

1x PCR buffer, 1.5 mM of MgCl2, 0.2 mM of each dNTP,
0.4 mM of each primer, 2.5 U of Taq Platinum DNA Poly-
merase (Life Technologies™, California, USA), 5 μL of
DNA template, and ultra-pure water q.s.p 25 μL. The cyc-
ling conditions consisted of 3min denaturation at 94 °C
followed by 35 cycles of 94 °C for 30 s, 54 °C for 30 s and
72 °C for 60 s, with a final extension of 72 °C for 10min.
The amplified product was visualized in 1% agarose gel as
above described on the cPCR for the gapdh gene section.

Sequencing and sequence analyses
Amplified products were purified using the “Exosap IT”
kit (Applied Biosystems, Cleveland, Ohio, USA) accord-
ing to the manufacturer’s recommendations. The se-
quencing of amplified products was performed
according to the method described in existent literature
[41]. The resulting sequences were then submitted to a
screening test using Phred-Phrap software version 23
[42, 43] to check for the chromatogram quality. BLAST
program [44] was used to analyze the nucleotides’ se-
quence and to search for the percentage of identity with
previously deposited sequences in GenBank [45].

Phylogenetic analyses
The 23S rRNA sequences originated from this study,
and those retrieved from GenBank were aligned using
MAFFT software [46]. The Bayesian inference (BI) ana-
lysis was performed with MrBayes 3·1·2 [47] via CIPRES
Science Gateway [48]. The best evolutionary model was
selected by the program jModelTest2 (version 2.1.6) on
XSEDE [49], under the Akaike Information Criterion
(AIC) [50]. The tree was edited in TreeGraph 2.0 β [51].
The bootstrapping values were indicated at the nodes,
based on 1.000.000 generations. The number of genera-
tions was selected based on the value of the average
standard deviation of split frequencies (between 0.01 and
0.05) according to MrBayes version 3.2 Manual [47].

Data analysis
To detect potential correlations between PH prevalence
and continuous variables, data normality was assessed
using the Shapiro-Wilkins test (p < 0.05). While the
Pearson correlation coefficient (p < 0.05) was used to de-
tect significant correlations if the data presented normal
distribution, Spearman’s rank coefficient test (p < 0.05)
was used for non-parametric data. To compare the
ADWG and the pigs’ gender, the Wilcoxon test was per-
formed. The abovementioned analysis was performed
using the software R version 3.5.1 [52]. Moreover, to find
the PH incidence value, the number of new cases be-
tween d0 and d105 was divided by the number of nega-
tive animals from the first blood sampling.
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