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Experimental infectious challenge in pigs 
leads to elevated fecal calprotectin levels 
following colitis, but not enteritis
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Abstract 

Background:  Fecal calprotectin is largely applied as a non-invasive intestinal inflammation biomarker in human 
medicine. Previous studies in pigs investigated the levels of fecal calprotectin in healthy animals only. Thus, there is 
a knowledge gap regarding its application during infectious diarrhea. This study investigated the usefulness of fecal 
calprotectin as a biomarker of intestinal inflammation in Brachyspira hyodysenteriae and Salmonella Typhimurium 
infected pigs.

Results:  Fecal samples from pigs with colitis (n = 18) were collected from animals experimentally inoculated with B. 
hyodysenteriae (n = 8) or from sham-inoculated controls (n = 3). Fecal samples from pigs with enteritis (n = 14) were 
collected from animals inoculated with Salmonella enterica serovar Typhimurium (n = 8) or from sham-inoculated 
controls (n = 4). For both groups, fecal samples were scored as: 0 = normal; 1 = soft, wet cement; 2 = watery feces; 
3 = mucoid diarrhea; and 4 = bloody diarrhea. Fecal calprotectin levels were assayed using a sandwich ELISA, a 
turbidimetric immunoassay and a point-of-care dipstick test. Fecal calprotectin levels were greater in colitis samples 
scoring 4 versus ≤ 4 using ELISA, and in feces scoring 3 and 4 versus ≤ 1 using immunoturbidimetry (P < 0.05). No 
differences were found in calprotectin concentration among fecal scores for enteritis samples, regardless of the assay 
used. All samples were found below detection limits using the dipstick method.

Conclusions:  Fecal calprotectin levels are increased following the development of colitis, but do not significantly 
change due to enteritis. While practical, the use of commercially available human kits present sensitivity limitations. 
Further studies are needed to validate the field application of calprotectin as a marker of intestinal inflammation.
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Background
The use of antimicrobials as growth promoters (APG) in 
pork production has been globally discouraged due to 
the emergence of multi-drug resistant bacterial strains 
which can impose risks to human and animal health [1, 

2]. In most countries with significant pork production, 
the current policies on the use of antimicrobial agents 
have resulted in a need for improved on-farm biosecurity, 
nutritional, husbandry, and welfare practices, as well as 
the development of tools to guide the use of antimicro-
bials [3]. A non-invasive biomarker for intestinal inflam-
mation would result in more judicious therapeutic and 
nutritional interventions during episodes of enteric dis-
eases in commercial operations.

Swine dysentery (SD) and porcine salmonello-
sis are intestinal disorders of global relevance in 
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grower-finisher pigs. Both diseases are associated with 
significant economic losses due to increased produc-
tion costs and poor animal performance [4, 5]. Muco-
hemorrhagic diarrhea and colitis (inflammation of 
the large intestine) are the main clinical signs of SD 
caused by Brachyspira hyodysenteriae. B. hampsonii 
and B. suanatina [6]. Currently, the use of antimicrobi-
als is the only strategy to prevent and treat this disease 
[7]. Salmonella enterica serovar Typhimurium causes 
enteritis (inflammation of the small intestine) and 
watery diarrhea in pigs [5, 8]. Even though studies have 
evaluated vaccination to control salmonellosis in pigs, 
protection is variable due to poor cross-protection 
across serovars [9, 10], and antimicrobials are still used 
metaphylactically.

Calprotectin is a 24  kDa calcium binding protein of 
the S100 family. It accounts for approximately 60% of 
the cytosolic protein in neutrophils and is also found in 
monocytes [11, 12]. It is released upon neutrophil acti-
vation and displays antimicrobial, antiproliferative and 
apoptotic properties [12, 13]. Interestingly, calprotectin is 
resistant to intestinal bacteria proteases [14]. In human 
medicine, calprotectin has been used to assess the extent 
of intestinal inflammation [15]. Its concentration in feces 
is correlated with inflammatory bowel disease (IBD) [16, 
17], and necrotic enterocolitis in infants [18]. Fecal cal-
protectin is used to identify and aids in distinguishing 
IBD from irritable bowel syndrome (IBS) [19, 20], and is 
specifically useful to predict disease activity and relapse 
during treatment [21, 22]. Increased fecal calprotectin 
levels were associated with endoscopic and histological 
lesions during episodes of IBD [23, 24] and can be used 
to distinguish between inflammatory and non-inflamma-
tory colitis in humans [25]. Physicians often apply this 
concept to distinguish IBD relapses from true infectious 
colitis and diarrhea [21, 25]. Thus, there is a plethora of 
commercially available kits aimed at detecting human 
calprotectin in feces, ranging from laboratory-intensive 
ELISAs to point-of-care dipsticks.

Studies focused on swine have investigated calprotec-
tin levels in the feces of healthy animals only, suggest-
ing it may be involved in intestinal homeostasis [26, 27]. 
However, there are no reports on the use of calprotectin 
as a biomarker of intestinal inflammation in disease-
challenged pigs. We hypothesized that, similar to what 
is observed in humans, pigs with intestinal inflammation 
have increased levels of fecal calprotectin. The swine cal-
protectin S100-A8 subunit amino-acid sequence is 72% 
similar to the human protein, and the S100-A9 subunit 
is 66% similar. Thus, we also hypothesized that commer-
cial kits aimed at human calprotectin should also detect 
the swine protein. Therefore, the objective of this study 
was to evaluate the usefulness of fecal calprotectin as a 

biomarker of colitis or enteritis in swine using commer-
cially available human kits.

Results
Colitis samples assessment
Using ELISA, fecal samples that scored 4 (bloody diar-
rhea) had higher calprotectin levels than those that 
scored 0, 1 or 3 (P = 0.037, Fig.  1A). Using immunotur-
bidimetry, fecal samples that scored 3 and 4 had higher 
calprotectin levels than those that scored 1 (score 3 
P = 0.039, score 4, P = 0.044 respectively, Fig.  1B). Fecal 
calprotectin level was positively correlated with fecal 
consistency scores using ELISA (ρ = 0.728; P = 0.001, 
Fig.  1A) and immunoturbidimetry (ρ = 0.80; P = 0.001, 
Fig. 1B). ELISA was positively correlated with the immu-
noturbidimetry assay (ρ = 0.55; P = 0.017). ROC curve 
analysis (Fig.  1C) revealed that both ELISA (P = 0.002) 
and immunoturbidimetry (P = 0.000) could reliably diag-
nose a diseased state. Immunochromatographic dipstick 
tested negative for all samples.

Enteritis samples assessment
No differences were found in calprotectin concentration 
among fecal score groups when measured using ELISA 
(P = 0.098; Fig.  2A) or immunoturbidimetry (P = 0.579; 
Fig. 2B). However, fecal scores 1 and 2 did have numeri-
cally higher fecal calprotectin concentrations than score 
0 using either method. Fecal calprotectin concentration 
was not correlated with fecal consistency scores when 
analyzed by either ELISA (ρ = 0.536; P = 0.59; Fig. 2A) or 
immunoturbidimetry (ρ = 0.268; P = 0.376; Fig.  2B). The 
same correlation pattern was observed between ELISA 
and Immunoturbidimetry assays (ρ = 0.464; P = 0.095). 
ROC curve analysis (Fig. 2C) revealed no statistical sig-
nificance regarding the ability of either ELISA (P = 0.56) 
or immunoturbidimetry (P = 0.51) assays in diagnosing 
a diseased state. Additionally, all samples tested nega-
tive when the immunochromatographic dipstick test was 
used.

Discussion
Grower-finisher infectious diarrhea in commercial swine 
operations leads to decreased performance and increased 
production costs associated with treatment and mortal-
ity, directly impacting profits [4, 5]. To help direct imme-
diate therapeutic and nutritional interventions following 
observation of diarrhea, a non-invasive intestinal inflam-
mation biomarker test to differentiate inflammatory from 
non-inflammatory causes of diarrhea would be beneficial 
for practitioners. In this study, we observed that fecal 
calprotectin levels, measured by ELISA or immunotur-
bidimetry, increases following the development of colitis 
and mucoid or bloody diarrhea in pigs challenged with 
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B. hyodysenteriae. However, we did not find any changes 
in fecal calprotectin levels due to enteritis caused by S. 
Typhimurium. Both methodologies were ineffective in 
discerning between mild, watery diarrhea and normal 
feces during colitis or enteritis.

Calprotectin is a calcium binding protein secreted by 
neutrophilic granulocytes and has a role controlling bac-
terial growth during inflammation [12, 28]. Recruitment 
of neutrophils to the intestinal mucosa leads to neutro-
phil cell shedding and active secretion of calprotectin to 
the intestinal lumen [12]. Currently, recognized triggers 
of calprotectin secretion are lipopolysaccharide and mon-
osodium ureate [1, 2]. This is in line with findings show-
ing that, in humans, bacterial agents lead to higher fecal 
calprotectin levels than viral [41, 56, 57]. Once secreted, 
calprotectin sequesters essential micronutrients such as 
iron, zinc, and manganese, inhibiting bacterial growth 
[29, 30]. Fecal calprotectin concentration has been shown 
to be correlated with the number of neutrophils released 
in the intestinal lumen during inflammation, which in 
humans can be associated with the severity of inflam-
mation [19]. Previous studies investigating calprotectin 
levels in the feces of healthy pigs suggested it may play 
a role in intestinal homeostasis [26]. Lallès et  al. [27] 
observed that the average fecal calprotectin concentra-
tion from sow samples (13 ± 38 mg/kg of feces) was close 
to the range described in healthy human adults (range 
2–47  mg/kg), but the concentrations found from piglet 
samples at birth were lower (24 ± 60 mg/kg) than human 
newborns (145 ± 78.5  mg/kg). The same authors also 
found very low fecal calprotectin levels in healthy pigs 
under high sanitary conditions. Elevated fecal calprotec-
tin is a common finding in humans with IBD [16, 22]. In 
humans, patients with IBD and IBS have similar clinical 
signs. Calprotectin is already extensively used in human 
medicine as a biomarker of IBD, as it can help distinguish 
IBS from IBD, and detect recurrent IBD during treatment 
[20, 25]. Fecal calprotectin levels reported from dog sam-
ples can be used to discern between animals with differ-
ent causes of chronic inflammatory enteropathies such 
as steroid‐responsive/refractory enteropathy and immu-
nosuppressant‐responsive/‐refractory enteropathy, and 
animals with food‐responsive enteropathy or antibiotic‐
responsive enteropathy before treatment [31, 32].

Here elevated fecal calprotectin levels in pigs were 
associated with mucoid or haemorrhagic colitis, but not 
enteritis. While further studies using larger populations 
are needed to validate these results, our data suggests 
that fecal calprotectin could be a potential tool used to 
diagnose severe inflammatory colitis, particularly by 
untrained observers who may, for example, miss blood 
staining in feces when pigs are housed in large groups. 
It may also help distinguish bacterial colitis from other 

Fig. 1  Calprotectin concentration in colitis fecal samples (COL, 
µg/g) from pigs challenged with B. hyodysenteriae. A ELISA assay; 
B Immunoturbidimetry assay; C ROC curve analysis plot (Turb—
immunoturbidimetry assay). Stars denote a significant difference 
(P < 0.05) between fecal scores. Bars denote median, with interquartile 
range shown error bars. (ρ = spearman’s correlation coefficient)
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causes of diarrhea in pigs, thus, contributing to a more 
judicious use of antimicrobials for pork production. We 
found that mucoid or mucohemorragic feces from pigs 
with colitis contained the highest calprotectin concen-
tration. Multiple previous reports have characterized 
the accumulation of neutrophils, a source of antimicro-
bial peptides such as calprotectin, on the surface of the 
colonic mucosa during B. hyodysenteriae and B. hamp-
sonii infection in pigs [33–36]. Here we found evidence 
that severe SD clinical signs are associated with increased 
fecal calprotectin levels, providing further evidence of 
the importance of neutrophils in the pathogenesis of 
swine dysentery.

In swine, S. Typhimurium invades epithelial cells of the 
small intestine. It can invade colonocytes as well, lead-
ing to inflammatory diarrhea with a marked increase in 
mucosal neutrophil infiltration [5, 8, 37]. Despite this, 
we did not observe a significant increase in fecal calpro-
tectin levels following inoculation with S. Typhimurium, 
regardless of the assay used. Our findings differ from 
previous studies that found increased fecal calprotectin 
concentration during S. Typhymurium infection in rats 
[38, 39], and Salmonella spp. infection in humans [40]. 
Human patients with severe or moderate bacterial gas-
troenteritis and fecal mucus have increased fecal calpro-
tectin, but those with mild diarrhea do not [41]. Mucoid 
feces is not a feature of swine salmonellosis, but it is asso-
ciated with Brachyspira spp. [5]. Moreover, it has been 
shown that S. Typhimurium overcomes the antimicrobial 
effect of calprotectin by expressing a high affinity zinc 
transporter (ZnuABC) [39, 42]. We recognize that the 
lack of histopathology data from either sample cohort is a 
limitation here and suggest the collection of such samples 
in future studies.

The literature is contradictory regarding the associa-
tion between high fecal calprotectin levels and lesion site. 
There are reports that either ileal or colonic lesions can 
both be monitored using fecal calprotectin as an indica-
tor of endoscopically active Crohn’s disease (CD) [16, 
43–45]. In contrast, other studies have found that the 
discriminatory power of fecal calprotectin is greater in 
ileocolonic and colonic CD, than in jejunal or ileal CD 
[46–48]. Zittan et al. [47] postulated that the slow intes-
tinal transit in the colon could increase calprotectin deg-
radation through intestinal proteases, thereby reducing 
its concentration in feces. We believe that the lack of 
difference in calprotectin levels in enteritis samples was 
due to the proximal location of the lesions, which were 
most likely associated with the small intestine [49]. Dif-
ferently from humans, pigs have a functional cecum that 
may contribute to this disappearance effect by luminal 
proteases. Furthermore, age may as well impact luminal 
calprotectin clearance. The gastrointestinal tract length 

Fig. 2  Calprotectin concentration in enteritis fecal samples (ENT, 
µg/g) from pigs challenged with S. Typhimurium. A ELISA assay; 
B Immunoturbidimetry assay. C ROC curve analysis plot (Turb—
immunoturbidimetry assay). Stars denote a significant difference 
(P < 0.05) between fecal scores. Bars denote median, with interquartile 
range shown error bars. (ρ = spearman’s correlation coefficient)
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of pigs used in this study were a portion of the size of a 
finisher pig, together with the functional changes that 
take place following weaning these could be factors that 
influence the disappearance of calprotectin released in 
the small intestine.

Interestingly, higher concentrations of fecal calpro-
tectin were found when measured using the immuno-
turbidimetry assay compared to ELISA in both sample 
cohorts. For human samples, ELISA based on monoclo-
nal antibodies is the gold standard used to quantify fecal 
calprotectin levels. It is specific to calprotectin heter-
odimeric and polymeric complexes. However, ELISA is 
laborious and time-consuming [13, 50] when compared 
to the a particle enhanced turbidimetric immunoassays 
(PETIA), based on polystyrene nanoparticles coated with 
calprotectin-specific antibodies binding to their specific 
target within the extracted samples. Subsequent quan-
tification of the agglutinated calprotectin-nanoparticle 
complex detected by light absorbance (turbidity) can be 
adapted to several commercially available clinical chem-
istry analyzers and has been proposed as a rapid response 
test [51]. Labaere et al. [52] compared different calprotec-
tin detection methods (three rapid quantitative immuno-
chromatografic tests, two enzyme-linked immunosorbent 
assays, and one automated fluoroimmunoassay), and 
reported significant variations in the calprotectin lev-
els detected. Juricic et  al. [53] reported fecal calprotec-
tin concentrations using a commercial ELISA kit to be 
significantly lower than a turbidimetric immunoassay. 
Oyaert et al. [54] observed satisfactory diagnostic perfor-
mance between six different fecal calprotectin immuno-
assays (two ELISA, two chemiluminescent immunoassays 
(CLIA), one fluoroenzyme immunoassay (FEIA), and 
one PETIA), even though there were discrepancies in 
calprotectin values detected between these kits. These 
reports are consistent with our findings that different 
assays resulted in different values for fecal calprotec-
tin. It is worth mentioning that the kits evaluated in this 
study used monoclonal antibodies specific for human 
calprotectin, therefore, the low calprotectin levels found 
by ELISA may be due to the lack of cross reactivity with 
the swine protein, as previously reported [26]. While we 
understand the limitation of this approach, commercial 
kits for fecal calprotectin detection are only available for 
humans. In addition, there are multiple point-of-care 
kits commercially available that could be translated into 
farm-friendly tools. Nevertheless, we still found evidence 
that human tests can be used in veterinary medicine, tak-
ing advantage of this previously developed infrastruc-
ture. However, test sensitivity must be further evaluated 
and optimized for swine, if deemed necessary by future 
investigations. We recognize that there are multiple other 
causes of enteritis and colitis in pigs, we believe that B. 

hyodysenteriae and S. Typhimurium are also representa-
tive of these syndromes. We also appreciate that a limited 
number of samples were utilized in both COL and ENT 
groups. This likely limited some of our findings related to 
the less severe fecal scores.

Conclusions
This initial data suggests that fecal calprotectin only 
peaks to detectable levels following colitis, but not enteri-
tis. The approach used was unable to discern between 
mild-diarrhea and healthy feces, or when pigs only devel-
oped enteritis. Further investigations are suggested as 
this approach has the potential to support the judicious 
use of antimicrobials for pork production through the 
differentiation of infectious from non-infectious causes 
of colitis.

Methods
Animal trials and fecal samples
Two independent trials (one for each pathogen) were per-
formed where pigs were obtained from the same PRRSV 
negative, high-health herd with no gastrointestinal clini-
cal signs and historically free from swine dysentery and 
salmonellosis. Animals were housed and allowed to accli-
mate in a BSL-2 animal care facility for 7  days prior to 
inoculation. Colitis samples (COL, n = 18) were obtained 
from 9-to-10-week-old barrow pigs (housed in pens with 
6 pigs/pen) experimentally inoculated (n = 8) thrice over 
72  h with Brachyspira hyodysenteriae G44 (obtained 
from a clinical case), the etiologic agent of swine dysen-
tery, or from sham-inoculated controls (n = 3). A com-
mercial starter diet, unmedicated, fed ad  libitum was 
used. Pigs were intragastrically inoculated with 50  mL 
liquid media averaging 1.69 × 109  genome equivalents/
mL as previously described [35]. A summary of the sam-
ples used from this trial is shown on Table 1. The devel-
opment of swine dysentery was confirmed by associating 
clinical signs, positive fecal B. hyodysenteriae culture 
and gross necropsy lesions (data not shown). Enteritis 
samples (ENT, n = 14) were collected from pigs experi-
mentally inoculated with Salmonella enterica serovar 
Typhimurium var Copenhagen (n = 9, isolated from a 
clinical case), or from non-infected controls (n = 4). After 
a 7-days acclimation period, pigs were orally inoculated 
twice within 4  h with 1  mL containing 3.3 × 109  CFU/
mL/pig of S. Typhimurium, as previously described [55], 
or 1 mL of sterile saline solution (non-infected controls). 
Pigs were fed a diet that met the minimum requirements 
for this age, and were group housed in pens with 8 ani-
mals [55]. Sample summary is also shown in Table 1. All 
animals tested negative by culture for their inoculation 
agent upon arrival at the BSL-2 facility [35, 55]. Daily 
monitoring for pathogen of interest shedding was also 
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performed as previously described [35, 55], and only pos-
itive samples were used in this study. Briefly, Brachyspira 
spp. culture was performed using BJ agar in anaerobic 
chambers at 42  °C for up to 10  days. Salmonella sam-
ples were cultured in brilliant green agar and verified 
by broth culture using enriched selenite-cysteine broth. 
As expected, fecal scores for this trial ranged from 0–2. 
The development of salmonellosis was confirmed by fecal 
culture, gross necropsy lesions (no signs of typhlitis or 
colitis were observed), clinical signs, intestinal levels of 
antioxidant enzymes and performance parameters (data 
not shown). Feces from both trials were collected follow-
ing digital stimulation, and only one sample per pig per 
score was included. Scoring followed a previously devel-
oped fecal consistency rubric [35]: 0 = normal; 1 = soft, 
wet cement; 2 = watery feces; 3 = mucoid diarrhea; and 
4 = bloody diarrhea. All fecal samples were obtained 
from individual pigs and stored at -80ºC until processing 
for analysis.

Fecal sample extraction
Fecal samples were processed according to the kit manu-
facturers’ instructions, with minor changes as described 
below (Bühlmann Calprotectin ELISA EK-CAL, Bühl-
mann Laboratories AG, Switzerland). For each sample, 
between 50 and 100 mg of feces were weighed into a ster-
ile polypropylene tube (15 mL, VWR Scientific Products, 
Suwanee, GA, USA). Extraction buffer was added, adjust-
ing the reaction volume to each sample weight to obtain 
a final 1:10 ratio. Extraction tubes were individually vor-
texed for 30  s (Fisher Vortex Genie 2, Fisher Scientific, 
Pittsburgh, PA, USA) at maximum speed and incubated 
for 30 min at room temperature on a shaker at 400 rpm 
(G-25 Incubator Shaker, New Brunswick Scientific Co., 
Inc., Edison, NJ, USA). Samples were vortexed again for 
30  s, a 1.5  mL aliquot was transferred to a 2  mL ster-
ile microfuge tube and centrifuged at 3000  g for 5  min. 
Finally, the supernatant was transferred to a 1.5  mL 
microfuge tube and stored at -20 °C until analysed.

Enzyme‑linked immunosorbent assay (ELISA)
ELISA was carried out following the manufacturer’s 
instructions (Bühlmann Calprotectin ELISA EK-CAL, 
Bühlmann Laboratories AG, Switzerland). Fecal extracts 
were thawed and homogenized prior to analysis. Initially, 
100 µL of incubation buffer (blank, negative control), 
five calibrator samples (100 µL/well, ranging from 30 to 
1800  µg/g; Additional file  1: Table  1), and low and high 
control samples (100 µL/well) were included on each 
microtiter plate precoated with anti-calprotectin mono-
clonal antibodies (mAb). Finally, 100 µL of fecal extract 
per sample was analyzed. All samples were analyzed 
in duplicates, including extraction controls. Following 

dispensing of samples and controls, reaction plates were 
incubated for 35  min using an orbital plate shaker at 
450  rpm, at room temperature. After incubation, plates 
were washed three times for 30  s with 300 µL of wash 
buffer per well. Next, each sample was incubated and 
mixed for 35 min with 100 µL of enzyme label anti- mAb 
conjugated with horseradish peroxidase (HRP). The wash 
step was repeated 5 times as described above and imme-
diately after; the color reaction was induced using 100 µL 
of tetramethylbenzidine (TBM). The plate was covered 
with a plate sealer (Bühlmann Laboratories AG, Swit-
zerland) to prevent TBM degradation due to exposure 
to light, and incubated for 15  min on a plate shaker at 
400 rpm at room temperature. The reaction was stopped 
by adding 100 µL of 0.25 M sulfuric acid to each well and 
absorbance assessed at 450 nm using a microplate reader 
(Biotek Epoch, Biotek  Instruments, Winooski, Vermont, 
USA). Calprotectin level was expressed as micrograms 
per gram (μg/g) of feces and values are reported as the 
mean value for both duplicates.

Immunoturbidimetry assay
Fecal extracts were thawed and analyzed using the fCal 
Turbo assay (BÜHLMANN, Laboratories AG, Switzer-
land). This assay was adapted to be performed on a plate 
reader. Reaction buffer (150 µL) and immunoparticles (30 
µL) were pipetted into all wells of a test plate. Six calibra-
tor samples (10 µL/well, ranging from 0 to 2207.6  µg/g; 
Additional file  1: Table  2) were included in each plate. 
Ten µL of fecal extract per sample was tested in dupli-
cate. Absorbance was measured at 546–580  nm using a 
microplate reader (Biotek Epoch, Biotek  Instruments, 
Winooski, Vermont, USA) using the Gen5 Data Analysis 
software interface (Biotek Instruments, Winooski, Ver-
mont, EUA).

Immunochromatographic assay
Samples were also analyzed using a point-of-care dip-
stick test for detection of calprotectin in feces (Actim 
calprotectin rapid test, Medix biochemica, Espoo, Fin-
land) following the manufacture’s instructions. This is a 
semi-quantitative test with a detection range of 12.5 to 
10,000  μg of calprotectin/g of human feces. Briefly, 1  g 
from each fecal sample was brought to room tempera-
ture and added to the dilution buffer container. The con-
tainer was manually shaken, and the detection stick was 
inserted in the container once the sample was diluted. 
Results were read after 10 min contact between the test 
strip and the sample.

Statistical analysis
One fecal sample from the COL group (the only score 
2) was removed from the analyses but is still shown in 
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the plots for visual comparison only. Analyses were per-
formed using SPSS (IBM‐SPSS, Chicago, IL, USA). Dif-
ferences in calprotectin levels among fecal score groups 
were analyzed using the Kruskal–Wallis test. When there 
was a significant overall group difference, the Dunn’s 
post-hoc test was used to assess pairwise differences. The 
association between calprotectin concentration and fecal 
consistency score, as well as between ELISA and Immu-
noturbidimetry assays, was assessed by determining the 
Spearman’s correlation coefficient (ρ). Alpha level for 
determination of significance was 0.05. A receiver opera-
tor characteristic (ROC) curve analysis was performed 

to assess the diagnostic efficiency of each diagnostic 
method. Fecal scores ≥ 2 were used as the clinical thresh-
old for diarrhea (positive sample).
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